Pis'ma v ZhETF, vol.68, iss.7, pp.572 - 577 (© 1998 October 10

NONLINEAR TRANSPORT THROUGH NS JUNCTIONS DUE TO
IMPERFECT ANDREEV REFLECTION

G.B.Lesovik, G.Blatter*
Institute of Solid State Physics RAS, 142432 Chernogolovka, Moscow District, Russia

+ Theoretische Physik, ETH-Hénggerberg, CH-8093 Ziirich, Switzerland

Submitted 25 August 1998

We investigate a normal metal — superconductor (point) contact in the limit where
the number of conducting channels in the metallic wire is reduced to few channels. As
the effective Fermi energy drops below the gap energy, a conducting band with a width
twice the Fermi energy is formed. Depending on the mode of operation, the conduction
band can be further squeezed, leading to various non-linear effects in the current-voltage
characteristics such as current saturation, a N-shaped negative differential resistance,
bistability, and hysteresis.

PACS: 72.10.-d, 72.20.Ht, 74.50.+r, 74.80.Fp

Coherent transport phenomena in micro-structured normal-superconductor (NS) sys-
tems have recently attracted a lot of interest [1]. The transport across a NS boundary
is governed by the phenomenon of Andreev reflection [2]: An electron incident from the
normal metal on the NS junction with an excitation energy |¢| below the superconducting
gap A cannot penetrate into the bulk superconductor (we measure the excitation energy
¢ of the electron with respect to the chemical potential 4 in the superconductor). Nev-
ertheless, subgap transport across the junction is possible via the process of Andreev
reflection, where the electron incident on the boundary is accompanied by a (coherent
reflected) hole, producing effectively a state with two incoming electrons which convert
into a Cooper pair upon entering the superconductor. For an ideal NS boundary, such a
process leads to a conductance G = 4e®/h per channel [3], twice higher than the maxi-
mally possible normal one. If the transparency T' of the boundary is smaller than unity,
the NS linear conductance decreases as T? at small T < 1 [3]. New effects appear in
the finite-bias or finite-temperature conductance when the transmission of electrons and
holes differs significantly as a consequence of their different longitudinal kinetic energies
[1,4-6]. In this letter we show how Andreev scattering, combined with specific conditions
for the propagation of electrons and holes, leads to the formation of a subgap conduction

" band with a width which strongly depends on the bias voltage, leading to new transport
characteristics exhibiting a negative differential resistance, bistable, and hysteretic effects.

To fix ideas, consider a single channel normal metal point contact to a bulk supercon-
ductor, see Fig. 1{a). Here we have in mind geometries such as quantum point contacts
realized in heterostructures [7, 8] or via manipulations with a scanning tunneling micro-
scope [9]. Given the chemical potential p, we define the longitudinal chemical potential
Bz = p— €1, where £, denotes the transverse energy of quantization in the normal chan-
nel. Here, we are interested in situations where the longitudinal kinetic energy K. j at the
Fermi surface is small, such that the condition p, < A is realized. In this case, electrons
with excitation energies e = E — y = K, — iz > 0 can propagate through the contact,
whereas the corresponding hole state with the same excitation energy can propagate only
if its kinetic energy Kp = u, —¢ remains positive, i.e., ¢ < p, (in this simplified discussion
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Fig.1. (a) Geometry of the NS point
contact with the 1D normal wire adi-
abatically connected to the normal
reservoir on the left and the bulk su-
perconductor on the right, see Ref. [8)].
(b) Dispersion relation in the normal
wire. Note the formation of a conduct-
ing band (cb) of width 2u.. (c) En- .
ergy diagram for the wire sketched in
(a). A change in bias eV induces a shift
U in the wire potential, which in turn
may lead to a reflection of the back-
propagating hole. The electron then is .
normal-reflected from the NS boundary
and does not contribute to the current

we assume that the conducting normal channel is long enough to generate transmission
probabilities 0 or 1 only).

An electron incident on the superconductor defines the Andreev state (in the normal
single channel region)
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with k. = /2m(p, £€)/h and vy = hky/m (the above states are normalized to carry

unit particle flux, with a normalization (¥., ¥,/) = 2rhd(e — ¢'), implying that |r..|?> =
= 1—|ren|?). Following the above discussion, the quenching of the hole state for energies
€ > g, combined with the restriction in the allowed energies for incident electron states
€ > —Ug, leads to the formation of a conducting band of width 2u,, see Fig.1b and the
inset of Fig.2. Within this band, incident electrons are (nearly) perfectly reflected into
holes, whereas electrons with energies above this band (¢ > p,) are reflected as electrons
and do not carry current (electrons with energies (¢ < —p.) do not enter the normal
channel at all). :

In the simplest formulation of the problem we consider a single channel NS junction.
The Andreev states are found by solving the Bogoliubov — de Gennes equations
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with the gap function A(z) = A®(z), using the Ansatz (1) in the normal region and
1\ eltr—a)e 1\ el—ir—a)=
Ye{z) =t —+t ( ) —— 3
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in the superconducting region z > 0, with p® — ¢*> = 2mp,/h?, pg = mVA? — 2 /K2,
7 = (e — ivAZ —g%)/A, and the normalizing velocity v = hp/m. Solving for the trans-
mission and reflection coefficients we obtain the spectral conductance Gns(je| < A) ~
~ (8e?/h)O(us —le) /12 — €2 /A, valid in the limit ., < A (see inset of Fig. 2; note that
the Andreev approximation is not valid in the present case). Assuming a rigid band, im-
plying that the applied bias drops at the boundary of the reservoir to the normal lead, the
finite conduction band produces a current-voltage (I-V) characteristics I = [ Y de Gns /e
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Fig.2. Current-voltage characteristics of the NS contact. Keeping the band rigid (dashed line), the
current saturates when all electrons within the band 24, contribute. In the gated wire (long dashes), the
back-propagation of holes is partially inhibited when the voltage increases beyond u:/2 and completely
quenched beyond eV = pg. In the wire with fixed charge (thick solid line) the current switches from the
upper to the lower branch, producing a pronounced negative differential resistivity. A finite reflectivity
reduces the instability (fixed charge, thin solid lines, |ree|? = 0.25, 0.5, 0.8). Inset: Spectral conductance
Gns versus energy €. For the 1D NS wire the conductance is suppressed due to imperfect Andreev
reflection (dotted line). For the adiabatically connected wire of Fig.la the Andreev approximation is
applicable and G s reaches is maximal value. The width of the conduction band depends on the wire
potential U (solid line: gated/fixed-charge wire; dashed line: rigid band)

Fig.3. Potential U within the normal wire versus applied bias for the case of a fixed charge and different
values of the reflection coefficient ree, ree = 0 (thick solid line), |ree|? = 0.25, 0.5, 0.8 (thin solid lines).
The lower branch becomes unstable at high applied bias and the internal potential U jumps to the gated
value (long dashes), leading to a NDR in the I-V characteristics of the contact

which saturates at a bias eV = u, (we assume a negative bias V' < 0, hence eV > 0). This
then is the simplest example where the quenching of the back-propagating holes limits
the width of the conducting band and entails a non-trivial saturation phenomenon in the
transport characteristics of the NS junction. It is in contrast to the normal point contact,
where an increasing bias eV opens up the channels, see Refs. [10] (note that a non-trivial
structure in the I-V characteristics can occur in a normal point contact as well, though
at much higher voltages eV > p, see [11]).

The above 1D example cannot be trivially applied to a physical situation: strictly
speaking, we neither have a superconducting instability nor a normal Fermi liquid in a
single channel 1D system. Let us then discuss the more realistic single channel NS point
contact with a geometry as sketched in Fig.1a, see also [7]: The 1D normal wire is adia-
batically connecting the normal reservoir with the bulk superconductor. The smooth form
of the wire guarantees the appropriate matching of the wavefunctions in the three device
segments, reservoir, 1D wire, and bulk superconductor. An imperfect matching leads to a
normal reflection of the incident particle at the NS boundary and thus reduces the subgap
transport with its interesting new features (below we will discuss the consequences of
normal reflection for the device characteristics in more detail). The main properties of
this geometry are the following: i) the confining potential of the wire produces a narrow
conduction band connecting the reservoir with the NS boundary, ii) the 1D wire is long
enough to guarantee a sharp onset of the transmission (but short enough to let us ignore
strong interaction effects due to the one-dimensionality), iii) the wide NS contact helps
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the proper matching of the wavefunctions, and iv) the large chemical potential in the bulk
superconductor allows us to adopt the Andreev approximation. The functionality of this
device resembles that of the idealized structure above: whereas in the 1D wire the back-
propagation of the hole was limited by the bottom of the conduction band, in the present
situation holes reflected from the NS boundary with minimal kinetic energy p, —e < 0
have to tunnel through the effective potential due to the transverse quantization in the
wire, see Fig.1c.

As we can apply the Andreev approximation for the geometry of Fig.1a, the determi-
nation of the conductance is trivial, Gns(€) = (4€?/h)O{u; — |e|), and the corresponding
I-V characteristics for the rigid band model follows from simple integration, see Fig.2.

So far, the determination of the current-voltage characteristics has been based on a
rigid band model, where the voltage drop in the device occurs at the boundary to the
normal reservoir. A more accurate calculation of the transport current I(V') involves
a self-consistent determination of the charge p(z) and the electric potential ep(z) in the
wire, given an applied bias V, see, e.g., Ref. [12]. Here we refrain from such a calculation,
but rather discuss two interesting limiting cases illustrating the potential features of such
a device.

The first case we wish to analyze is the gated wire, where a top gate placed over the
wire modifies its potential edp = U(V,V;). In the simplest case, considered by Brown
et al. [11], the gate potential V, follows the applied bias, §V; = V. Assuming further
that the wire potential is slaved to the gate, the band bottom in the wire is lifted by
U = eV, implying that backpropagating holes and low energy incident electrons are
cutoff at |e] = £(p, — eV) rather than +y,. Within the Andreev approximation the
spectral conductance Gys is narrowed down to the interval |e| < p, — eV and takes the
form

4e? .
Grs(e, U(V)) = —-0[(ue —U(V)) ~ el (4)
A simple integration produces the I-V characteristics

IV < AJe) = / deGus(e, U(V)) (5)

exhibiting a negative differential resistance (NDR) regime within the bias interval u, /2 <
< eV < g, see Fig. 2: Increasing the applied biased eV up to u;/2, additional current
carrying states are occupied and the transport current I increases. Going beyond the
value . /2, the rising bottom of the band quenches the back propagation of the holes and
fewer states are available, until at eV = p, all current carrying states are blocked.

The above NDR phenomenon is further accentuated in a device where the charge of
the wire rather than its potential is fixed — this is the second limiting case we wish to
study here. The contribution to the charge density of an individual channel averaged over
the wire cross section is given by

z) = 2e ) _{foler)lur(@)® + [L - fulew)]lor(2)?}, (6)
k

with f,(e) the (bias dependent) distribution function for the Bogoliubov quasi-particles.
We evaluate the density in the middle of the wire and allow for a non-zero potential shift
U. Using the normalization introduced in (1) we arrive at the form

o= %/d [I:I,(re§| .fv( )+ lref(l,l)[l fv(a)]J (7)
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with vy = 1/2(p; — U * €)/m the velocities of the quasiparticles. For the case of perfect
Andreev reflection the above expression simplifies to [we assume an open channel confi-
guration with 0 < eV < u, — U; the occupation numbers are determined by those of the
metallic reservoir, fy(¢) = ©(—e + eV) at zero temperature]

e [/m eV 1 #e—U 1
p= /= / de———= +/ de————]. (8)
ThY 2 \J_,,sv Ve—-U+e Jov Vi —U~—¢
Requiring that the charge difference dp = p(eV,U) — p(0,0) vanishes at any applied bias
V leads to the condition (ke = /2mpu,/h)

apzekp,z [\/I_U—6V+\/ _U+eV_2
™ e e

determining the potential shift I/ (V) in the wire. Solving for U we obtain the result

The negative shift in the wire potential seems quite puzzling at first sight, but can be
easily understood in terms of the reduced group velocity of the back-propagating holes.
A second solution is found for a positive shift U > p,, where the Andreev scattering is
quenched and all incident electrons are reflected back as electrons (|re.|? = 1). With
dp = (2eke o /7)[\/1 — (U — eV)/p, — 1} = 0 we find the shift

UV)=eV, u,—-U{V)<0<eV. (10)
Finally, a regime with partially quenched Andreev scattering is found in the inter-

val 0 < p, — U < eV, with U(V) determined by the relation dp = (eke /%)
24/1— (U —eV)/ps — /2(1 — U/usz) — 2] = 0 and the result

U =2eV — 5u, + 41/ 2 (21 —~ V). (11)

The internal potential shift U versus applied bias V is shown in Fig.3 (thick solid line).
The three branches of U (V') exhibiting completely open, partially quenched, and entirely
quenched hole propagation in the wire arrange to define a typical bistable configuration
of the wire within the bias interval p, < eV < 2u;. The lower branch with the open
channel terminates at eV = 2u, and the system has to jump to the state where the
backpropagation of holes is quenched. Physically, the jump between the two branches
corresponds to a rearrangement of the potential drop in the device: At small bias (lower
branch) the applied bias drops on the left side of the channel, towards the reservoir. At
high bias (upper branch) the potential drops on the superconductor side, producing the
gated situation described above. Translating this behavior of the internal device bias U
to the I-V characteristics, see Fig.2, we find a jump from the ‘open’ current carrying
state at low bias to the ‘closed’ gated state at high bias as the applied bias eV grows
beyond the band width 24, thereby producing a characteristics with a N-shaped negative
differential resistance. At voltages eV > A a finite conductance is restored. Note that
the I-V characteristics is not symmetric: for a positive applied bias V > 0 (eV < 0) the
conduction band stays open up to the bias eV. = —2u,, where the wire potential aligns
with the potential in the reservoir, U — pu, = eV, see (9). Increasing the bias further, the
current saturates (similarly to the rigid band case) as part of the incoming electrons are
excluded from entering the wire.

=0,

y 0<eV <p,—U(V). (9)
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The above analysis for the case of ideal Andreev reflection at the NS boundary can
be easily generalized to take a finite normal reflectivity of the barrier into account. It
is convenient to characterize the junction through its normal state properties: Given the
reflection coefficient R for electrons entering the 1D wire, the parameter |r.[?> switches
between the values |ree|* = 4R/(1+ R)? (‘open’ channel) and |re.|* = 0 (‘closed’ channel)
(see Refs. [13, 6]; we assume that 9. R(e) ~ 0 and € < A, allowing us to ignore the energy
dependence in |re.|?). A finite value of R then leads to a smoothing of the potential-bias
relation and the current-voltage characteristics, see Figs. 2 and 3. As R approaches unity
the fixed-charge characteristics approaches the result of the gated wire.

Above we have concentrated on the single channel limit, where the non-linear effects
leading to the NDR phenomenon are most pronounced. Going over to a multi-channel
geometry, our analysis can be carried over to the grazing incidence trajectories [4] with
the modification pz — fz,n = p& — €1 n, where £3 , = A*K2/2m is the transverse energy
of the n-th channel. The interesting structure obtained in the single channel case (see
Fig. 2) then survives for the states with an effective chemical potential u., < A. The
maximal number of channels to be saturated or cut off in this fashion below a bias eV ~ A
is of order dn ~ (A/u)n, where n > 1 is the total number of channels. In a bulk system
with a planar NS boundary these states correspond to grazing incidence trajectories with
angles 9 < \/A/p.

In conclusion, the different propagation conditions for electrons and holes in NS junc-
tions produce a rich variety of phenomena. Both, the zero- and finite-bias anomalies [1]
in dirty NS junctions can be understood in such terms [6]. Here, we have shown how
the coherent electron-hole transport in a one/few channel system may lead to strong
non-linearities in the device characteristics, resulting in an N-shaped NDR I-V curve in
its most extreme variant. In conventional semiconductor devices this kind of instability
leads to the formation of domain walls, e.g., the Gunn effect. In the present case where
the transport is non-local and coherent we can expect a device operation more similar to
that of a double-barrier resonant-tunneling structure [14].
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