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For the vortex lattice in an anisotropic superconductor with well-separated cores
(Hey € B € Hc3) it is shown that sizeable de Haas—van Alphen oscillations are caused
by the levels crossing of the energy threshold separating localized and extended states of
excitations moving in the average magnetic field, B.

PACS: 72.15.Gd, 74.20.Fg, 74.60.-w

Recent experiments [1,2] show that the de Haas—van Alphen (dHvA) effect persists
in the superconducting (SC) state for the magnetic field, B, as low as B ~ 0.3 + 0.4H,,.
The effective SC-gap, A, at such fields is large enough to preclude motion of an electron
along a closed Larmor orbit with some radius, r; ~ vr/w,, exceedingly larger than the
coherence length, &, and the intervortex distance, d [3]. The dHvA-signal is expected
to weaken exponentially as exp(—A/w.) [4]. In that which follows we suggest a new
mechanism for the quantum oscillations in the mixed SC-state.

In normal state the dHvA-effect is brought about by levels crossing the chemical
potential, u, with the field variation. The oscillations are periodic in B~! because a

. minor field change, AB/B ~ w./u, is enough to push a level across u.

Electron- or hole-like character of SC-excitations depends on the extent their energy
exceeds the gap. Even for a “d-wave” superconductor [5] levels cannot cross the chemical
potential. In this sense, there is no difference between a “d-wave” or any other anisotropic
SC.

It is shown below that a new energy threshold takes over the role of the chemical
potential in the SC-state. Consider, for example, an anisotropic superconductor with a
spectrum, £(p) = /v%(p — pr)? + |A(p)]2. Assume, for simplicity, that the gap, A(p),
has only one maximum, Apmqe., and one minimum, A,in, along the Fermi Surface (FS).
Excitations with e(p) > Ap,- have itinerant behavior, while at Apaz > €(P) > Amin
this is only true for excitations with a proper p. The latter become localized in a magnetic
field, for the Lorentz force changes the p-direction. Excitations with the energy larger
than A,,.z, may move along an extended Larmor orbit.

To pose this phenomenon as a theoretical problem, consider the limit of well separated
vortices d 3> £o(He € B < Hg2). The vortex cores occupying only a minor fraction of
the volume may be neglected. A typical electron trajectory would run across the “bulk”,
where the gap amplitude is saturated:

A(p,r) = A(p) exp(ip(r)). (1)

The method [5] to treat the problem is based on averaging the Gor’kov system of Green
functions over quasiclassical trajectories [6] (all notations below from ref. [5]). The Green
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functions are presented in terms of the position, ¢, of an electron along the FS. The core of
the method is given by egs. (23)—(28) in ref.[5]. The Gor’kov matrix being diagonalized,
the whole problem reduces to solving the following Schrodinger equation:

—wiy" +[A%(p) — weA'(p)ly = Ey. (2)
The term, —w.A’(yp), plays no role and will be omitted. In (2) we have also left out
the term h(yp) of eq. (31) in ref.[5]. The Doppler shift (31) in ref.[5] is essential for the
magnitude of the effect, and will be taken into account later.

The eigen functions are given by solutions of (2) satisfying the periodicity condition
(¢ = ¢+ 2m) for

y(p)e ™ - )
where k = i/w. comes from presenting the chemical potential in the form [5]
= weN, + fi. 4)

With p being large, Ny > 1, and the specific Ny does not affect the pattern of periodic
(in B~1) oscillations of the magnetization which depends on  in the interval (0,1). Eq.
(2) and (3) become the problem of finding the band structure for a particle moving in the
periodic potential A%(p) with x'as a quas1momentum

Re-write (2) in the form

—wiy" + (AN) - ALy = (B - ALy 2"

and consider (2') first in the quasiclassical WKB-approximation (w. < A). At |E| > A
the periodicity of (3) leads to the spectrum of free electrons in the magnetic field: E, =
= wen + . At E?2 — A2, < 0 the attractive potential in (2') has many (A/w. > 1)
“localized” levels (tunneling across the barrier is neglected). The boundary separating
“extended” and “localized” states in the WKB-sense lies at Apq2. Introduce in (2'):

E? - A?na:c >~ 2Apmaz(—€) (5)
for |E| close to Ap,z- The WKB-solutions are [7]:-
(4
velp) = AS () expli [ 5'(0)d] (6)

with
; 1/2
weS'(0) = [28mas (=€) + Adya, — A2(0)] ™
(A is the normalization coefficient). The BCS-factors, u(yp) and v(y), in (23) in ref.[5]
are to be norma.hzed together: |u2| + |v2| = 1 (the bar in (...) means the normalization
integral: (2m)~?! ( .)dyp). Two auxiliary expressions which follow from egs. (26-28)
in ref.[5]:

W] = 3 {WF + (e 2BYd 37}, 7] = 5 {WFF ~ Giwe 2D — w5} (®)

immediately show that |y[2 = 1.
Expression (6) in ref.[5], containing oscillatory effects

M=-= >l (©)



(A enumerates the eigenvalues, factor 2 added to (6) in ref.[5], accounts for spins, and
n(E)) =1 at Ey <0 and T = 0), becomes an integral over A with the use of the Poisson
formula:

+0oo +o0 ) -
Sdr-n)= > &N (10)
—00 k=—c0
Integration by parts transforms M_,_ into [5):
— i/"’e 2:7rKA Pl 10/
MOIC 21r2 K/ [ux((p)I )(iA ( )

Although integration over A acquires the meaning only after the connection between A
and the energy is established, the threshold separating “localized” and “extended” (in
the WKB-sense (6), (7)) states is already seen in eq. (10'): for “localized” states, [E| <
Ajnaz, the wave functions are real, and from (8) |u2]| = 1/2. For “extended” states (6)
we have:

il = 3 {15 e -

with |A,|%-a function of energy (see (6)). The derivative in (10’) thus eliminates states
below A,z with |ux|? = 1/2 being energy independent.

Returning to summation over A, egs. (10) and (10'), we need to construct such the
function:

AE) = ®(E)/2n (12)

that the provision:
&(En) = 2mn : (12')

would enumerate all energy levels in the consecutive order. In the WKB-approach $(E)
is given by: )
2w

S(2m, —g) = (1/w,) 'S’ (o, —€)dp — 27K (13)

0
which at large energies matches the Landau free electron spectrum. The approach falls
short near (—¢) = 0.

Choose A?(ip) near A,,q; 38

A% () = AL, (1 - ap?). (14)
Expanding (13) in (—¢) > 0, one obtains:
527, —e) ~ S(2m,0) — (1/2) In{l/A) (15)
with the useful notation in (14):
1= (=2¢)/w.a'? ; A= (aY?Apmag/we) > 1. (16)
Similarly, the factor |A|% in (6) and (11) at small [ is proportional to:
|4 o< [in(t/A)] (15')
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Because of the singularity (15) the “numbering” function #(F) cannot be comprised
of the two WKB-branches, the one that is given by (13) (at (—¢) > 0), and the other
which counts “localized” states ((—¢) < 0).

Note that-far away from ¢ = 0 the WKB-solution

Y(p) = ay4 (p) + by—(p) (17

is still correct. With the use of (5), (14), (16), eq. (2') can be solved near ¢ = 0 in terms
of the parabolic cylinder functions. It establishes the matrix relation between coeflicients
(a,b) in (17) on the R.H.S. of ¢ = 0., and the other set (a’,b') on its L.H.S., ¢ = 0._:

(9)-(z 2)(3)

Beginning at ¢ = 04, moving along with eq. (17) toward (2w)- and using (18), the
periodicity condition for (3) provides the equation:

R(l) = |of(e*5 + e7*5) = 2 cos 2. (19)
Abbreviations in eq. (19) are:
S = 8(2m,~¢) — 0, a = |a|exp(if). (19"
Of the two solutions of eq. (19) we chose

S = 1 {cos 27k + i4/|a|? — cos? 21m} = p(l) (20)

laf

because at (—¢), i.e. I, large and positive |a] = 1, & = 0, and we return in this limit to
(13). On the real axis of I the function

(1) = S(2m,1) — 8(1) — %m o(1) (21)

is positive, with d®/dl > 0, and matches asymptotically (at ! — o0) the free electron
spectrum. With the help of (12) and (21) the oscillatory magnetization is

o e S~ 1Y ke 4 (s
Mo =315 S g [ ex0 g (@) a. (22)

®(1) being continued analytically into the complex I-plane, the integration may be
shifted into the upper half-plane (from (11), (15’) one has the behavior of d(Ju;|?)/d! at
large |!{). Consider singularities in (22). Thus from the expression for |a| 9

lod = (1 + 7)1/ (23)
we conclude that branching points in (23) lie at
I = £(2m + 1)1. (24)

I To the best of the author’s knowledge, the complete matrix in (17) was not published, although
transmission/reflection processes for a parabolic barrier have been studied (see in ref. [7]). The author
thanks V. Pokrovsky for discussion of references.
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This is also true for 6(l) (see §(2,1) below). The definition of p(l) together with (23)
for |a|, leads to the square root singularities at

I, =xt(2m+1)i— %ln(sin2 2rk) =l + lo. (24")

For ®(l) to be analytical in a strip at the real axis, the branch-cuts in the I-plane, caused
by singularities (24, 24’), must be chosen parallel to the imaginary axis.

The integral in (22) may be bent to the contours, C; and (%, each encircling the
branch-cuts (24) and (24') in the upper half-plane. The non-analytical terms of eq. (15)
at |A| ~ 1 are now absent in §(2m,I)(c ~ 1):

S(em,0) = S(2m,0) + Lilin(A - )] ~ 5 In [r(% + DG - g)] . (25)
Both integrals (along C; and Cj) rapidly converge.

It is necessary to normalize |u;(p)|? with the accuracy better than that given by the
WXKB-approximation in (6), (11). Fortunately the properties of the Bloch functions in a
one-dimensional periodic potential are well-studied. With the help of eq. {4.18) in ref.
[8] and our eqgs. (8) we derive:

——— 1 drR]™*
2 - - _ral/245 haini :
lur ()| 5 — ma/"sin 2k [ ¥ } (26)

(here R(l) is the R.H.S. of (19)). After differentiation on ! in (22) had eliminated 1/2 in
(26), one may use for the rest the rapid convergence of the integrals to integrate back by
parts in (22). Single terms under the sum symbol (22) become:
inal/? sin 27k /' exp(iK®(1))d!

2 (sin? 27k + e—1)1/2

Ig =

(27)

with integrals running along Cp, C2. Assume that InA > 1 in (25). First, the term in
(22) with K = 1 prevails. In addition, as seen from (25), it is enough to consider the
nearest singularities with m = 0 in (24), (24'). Defining the branches of the square roots
in (27) properly, from (27) one obtains contributions to I; from the two contour integrals,
over C; and Cj, correspondingly:

(2m)3/%atg2nk iS(2m,0)+ 42

I = -
HO) =~ R B Agi ¢ (28)
. L 91/2
ra'/?sin2wke T [T(1 - %) s i
— . ,15(27,0)+ 5% In(Ac) '
I(Cy) (Ae) 2 (In AC) /2 |T(1+ %o.) € 2 (28")

with lg from (24'). (I; has the form (28), (28') at o not too small (Iy 2 (In Ac)~1.) Other-
wise the two contours C; and C; start to merge. Also, if ly becomes large (sin® 2k — 0),
expression (25) for S(2m,1) being correct at [I| ~ 1, ceases to be applicable).
Expressions (28) explicitly present the periodic (in B~1) oscillations in the magneti-
zation as k varies in the interval (0,1). It is notable that the amplitude is of the order
of (we/Amaz)'/?, ie., is not exponentially small. Both (28) and (28') lead to the large
content of the higher harmonics. In principle, M,,. could be measured directly as a func-
tion of small changes in B. I,(C,) discloses a rather regular behavior in AB (i.e., &),
while I (C2) rapidly becomes chaotic due to the phase factor in (28'), exp [i(lp/2) In(Ac)],
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contributing into higher harmonics. At the Fourier analysis of the dHvA-gsignal a few first
harmonics are expected to be seen with the intensity of the order of

(“’C/Amaz)l/z- (29)

Unfortunately, (29) does not take into account scattering of electrons on the flux lines.
The term h(yp) of eq. (31) in ref.[5], if included, adds to the potential of eq. (2'):

2Amazh(p)- (30)

Even though h(p) ~ vp/d is small compared with Az, (30) drastically distorts the
potential near ¢ = 0. It is a local Amqez in the vicinity of the maximum in A(yp) which
now sets in the energy threshold between “localized” and “extended” states. Note that
although h{(p) is rather irregular (for a given trajectory) and does change typically on the
scale of §p ~ {dw./vF), its local maxima produce potential barriers in (30) which remain
impenetrable in the quasiclassical sense. The above analysis of M,,. can be performed
in exactly the same manner as above around Anqz. There is a change in the scale (29),
because the curvature, a, near a maximum in (30) is much higher than in (14). Without
going into details, we comment that this only increases the effect, because the potential
h(y) near Rmaz comprises a much sharper barrier, if compared with eq. (14).

The major destroying effect comes from the phase factor in (25), S(2r,0). At
h(p) # 0, $(2x,0) may be expanded in 8h(p) = A(p) — Amas. (Now (—¢) = E-—
—Amaz = Rmaz.) The fluctuating part, 6S(2,0), is

27

§5(27,0) = —(Amaa/we) | 5h(p) (A2, — A%(p)) ™ do. (31)
[1]

Since (§h(p)) (the average over all trajectories) is obviously zero, fluctuations in
exp(i65(2m,0)) lead, as in [5], to an effective Dingle factor of the form

exp(—vr/dwe) = exp(—(A/wc)(fo/d))- (32)

The exponent in (32) provides much more favorable conditions for observation of-the
dHvA-effect than previous results [4].

To conclude, in the developed mixed state of an anisotropic superconductor there exists
the energy threshold sorting excitations into two categories: the localized and extended
ones. Crossing this threshold by the excitations levels at the change of the magnetic
field comprises the new mechanism for quantum oscillations. Scattering on the flux lines
reduces the dHvA-effect. Nevertheless, the effect remans bigger than anticipated.
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