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The electrostatic quadrupolar interaction between spherical nematic droplets in an
isotropic (and nonconducting) liquid is calculated. It is found to have an anisotropic form
U; < 1/R%, where R is the distance between droplets, with repulsion for droplets having
parallel orientation of the quadrupole moments and attraction at oblique angles around
the orthogonal orientation. In an external magnetic field aligning the orientations of the
quadrupole moments, a competition of the guadrupolar repulsion and van der Waals
attraction (Uyaw o 1/ R®) leads to a specific spatial organization of droplets which is in
fact often reported in experimental observations (see the monograph [1] and references
cited therein).

PACS: 05.20.-y, 68.10.-m, 82.65.-i

1. A nematic liquid crystal is uniform in its ground state, which, however, is very rarely
attained in practice. The structure and properties of suspensions (in particular, nematic
droplets in an isotropic liquid matrix) pose a number of theoretical and experimental
questions which are interesting both from the standpoint of practical applications of liquid
crystals and also because phenomena of this kind are of fundamental interest in their own
right.

There is one rather evident consequence of nematic ordering that nevertheless, as far
as we know, has never been considered before. As is well known [2], the nematic order
parameter is a second-order tensor and has all the properties of the quadrupole moment
of a charge distribution. Therefore generally nematics are quadrupolar ferroelectrics (and
their isotropic phase is accordingly a quadrupolar paraelectric in which the nematic fluc-
tuations enhance the quadrupolar susceptibility). In spite of this fairly strong statement,
in the general case for large (ideally infinite) systems it does not lead to any directly
observable predictions, primarily because quadrupolar forces are not very long-ranged.
They are proportional to 1/R®, and for large systems this contribution to the energy can
be represented (in terms of a Fourier expansion) as being proportional to ¢? (actually
to a certain anisotropic combination of g;q;), and therefore the quadrupolar interactions
in principle give some corrections to the bare contributions to the total free energy of
the system which scale as ¢* (e.g., compressibility or orientational deformations). From
the standpoint of translational symmetry, however, nematics are equivalent to isotropic
liquids and must therefore have isotropic (xg?) compressibility. Thus the anisotropic
quadrupolar contribution to the compressibility in nematics should by definition be zero.
The only consequence of quadrupolar forces for bulk nematics is a renormalization of the
Frank elastic moduli, which can be represented in the form K;; = K2 + K, ? where K9,

it

is the bare value related to forces more short-ranged than the quadrupolar forces, e.g.,
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steric forces, and Ki? is the contribution from the quadrupolar interactions. It is clear
that such a separation has no relevant physical meaning, and we will not discuss it further
in this paper.

The above statement does not necessarily hold for small {(mesoscopic) systems, where
quadrupolar forces can lead to fairly pronounced phenomena. For a nematic droplet the
director distribution field inside the droplet depends on the strength of surface anchoring,
the elastic constants, and the droplet size. In the next section some particular configu-
rations having quadrupolar symmetry of the director field will be presented. For such
configurations the total orientational quadrupole moment of a droplet is nonzero. On the
other hand, in the general case (when the chemical bonds in the material are not purely
covalent, and actually they never are 100% covalent — see, e.g., [3] or the more recent
monograph (4]) the droplets should also have an electrostatic quadrupole moment (recall
that nematic liquid crystals are quadrupolar ferroelectrics). Therefore an orientational
quadrupole moment of the droplet will inevitably lead to an electrostatic quadrupole mo-
ment. The latter can create an observable (and not extremely small) electric field around
such a droplet (for a droplet radius of the order of 10~% cm it can be as large as 1 V/cm;
see the estimates below).

Nevertheless, even for mesoscopic objects the director distribution inside a droplet
(and the shape of the droplet itself) is determined mainly by its surface tension and
anchoring energy (and, of course, the nematic elastic moduli) and not by the electrosta-
tic quadrupolar energy. Indeed, the electric field created by a quadrupole moment on
the droplet surface scales as Eg o (Dg/L*), where L is the droplet radius and Dy is
the total quadrupole moment, which can be estimated as Dy = dgN, where dy is the
molecular quadrupole moment and N is the number of molecules in the droplet, i.e.,
N = (4nL%/3a%l). Tt is customarily believed that for most thermotropic nematics the
molecules can be represented as hard rods having a well-defined length ! and diameter a.
Therefore the quadrupolar contribution to the energy is

aQ /E2d37' >~ TIEL . (1)

This should be compared to the conventional anchoring and surface energy of the nematic
droplet, F, ~ W L2, where W « T/a? if it is a typical surface energy or o< T'/I? for the
anchoring energy. Thus in any case for

L> 4?:W ~ (2)
(where the so-called Bjerrum length I, (see, e.g., [5]) is usually of the order of 10 A, and
therefore the condition (2) is always satisfied for any real nematic droplet with L ~ 10%-
10* A), and the shape (and director distribution) of the nematic droplet is determined
mainly by the conventional surface energy.

However, let us stress once again that the quadrupolar forces (though they give only
small corrections to the thermodynamic properties) are not negligible. For example, using
the rough estimates given above, one can find that for a droplet with L ~ 10~* cm the
quadrupolar electric field around it will be about Eg ~ 1 V/cm.

2. From what we have said above it is clear that under the condition (2) the director
distribution in a nematic droplet can be found in the standard way [2} by minimization
of the Frank elastic energy with suitable boundary conditions. In fact, a simple quali-
tative analysis of possible director configurations shows that for a spherical droplet with
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any boundary condition (the only exception being an infinitely strong radial anchoring),
the director distributions always have quadrupolar symmetry. We might mention, for
example, bipolar structures with two surface point defects (so-called boojums), which
can be realized for tangential boundary conditions, or more-sophisticated (but also pos-
sessing quadrupolar symmetry) structures which arise in the case of tilted orientation of
the director on the droplet surface and which correspond to two boojums, one hedgehog,
and one disclination ring {see [6]). All these configurations can be characterized by a
quadrupolar preferred direction m = —m (e.g., for the bipolar structure m is a unit
vector along the direction between two poles). Thus the quadrupole moment of such a
configuration can be represented in the form

- 1
Dy, = Do(mymy, — §5ik)a (3)

and the only difference between different quadrupolar configurations is the numerical
coefficient (of the order of 1/10) which relates Dy and Dy. We henceforth neglect this dif-
ference, or, more accurately, consider this numerical factor to be included in the definition
of bo.

The quadrupole—quadrupole pair interaction between droplets having quadrupole mo-
ments D™ and D@ for distances R larger than the size of each droplet can be found
easily for the case when the droplets have no charge and no dipole moment [7]:

1 (2 o 0 (1) Ny 7§
= —_ 4
Ftnt 12D03 ama 6175[ ~8 R3 ] 3 ( )
where n is a unit vector along R. Using (3) and performing the calculations, we find
bW pH@ ) )
Fint = ——({—2—53—[(m1m2)2 - 20(nm, )(nm;)(m;mz) — 5((nm;)* + (nm3)*)
2 2 4
+35(mn)°(nm,)* + §] (5)

In the general case Fy;; is a function of three angular variables: 8;, 8,, and ¢ — @2 (where
0; and ¢; are, respectively, the polar and azimuthal angles between m; and n).

Although the complete investigation of this function can be done only numerically,
some particular configurations of relevance to us can rather easily be calculated ana-
lytically. Namely, one can show that attraction takes place only for nearly orthogonal
orientations? of m; and m,, while for nearly parallel vectors m; we have always re-
pulsion. Expression (5) has a zero average over a sphere, as it should for quadrupolar
' symmetry.

Obviously Fin:(R, 01,682,901 — @2) is a noncentral potential, and the force on the ne-
matic droplet has both radial and angular (torque) components. Therefore when we have
many droplets interacting with each other in many different directions, and also as a
result of Brownian motion, these droplets will always find a way towards the global an-
gular minimum. This implies that the droplets would tend to organize themselves into
chains with alternating orthogonal orientations of the quadrupole moments of neighbor-

1) The angular interval in which attraction takes place can be characterized by a certain angle between

n and one of the vectors m, which is varied from arccos/(4/15) to arccos,/(2/3), and the maximum is
achieved for precisely orthogonal orientations.
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ing droplets. One can consider organization of this type as an analogy of ferroelectric
domains for quadrupolar ferroelectrics.

It is easy to estimate the characteristic time for chain formation controlled by the
Stokes friction force 6mnLu, where 7 is the viscosity of the liquid and u is the velocity of
a droplet. The interdroplet distance R is proportional to ¢~1/3L, where ¢ is the droplet
concentration. Therefore using expression (5) for quadrupolar attraction and equating
the frictional and quadrupolar forces, one can estimate the characteristic time as

atl? _
T~ "——dz L2¢7/8, (6)
0

Here (as well as later on) we ignore the entropy of mixing of the droplets, treating them
as macroscopic objects, and, of course, the estimate (6) is valid only for small ¢, when
R>» L.

Interesting phenomena can appear when we apply an external magnetic field to the
system. Recall that the droplets are not only quadrupolar ferroelectrics but also con-
ventional nematics having a diamagnetic anisotropy x,. Therefore a sufficiently strong
magnetic field can provide alignment of the droplet quadrupole moments. The necessary
condition for this alignment is

215273 Dz
XaH L’ > R‘g (7)

i.e., the magnetic energy must overcome the quadrupolar attraction. From (7) we find the
critical field

d 1
H“‘mﬁu ®)

(we have assumed here that R ~ L). Natural estimates of the parameters appearing in
(8) give H, ~ 10°-10* G.

However to avoid director deformations inside a droplet (and the consequent reduction
of the droplet quadrupole moments) under the influence of this field, it must be smaller
than the critical field for the Fréedericksz transition (2] , [9]

K1
HF:\/:X;Z' . (9)

Comparing (8) and (9), we get the condition
do < VKa®l. (10)
Estimating K as T'/l, we conclude that the condition (10) is equivalent to the condition

l
Ay < l(-‘-z-),

which can be satisfied for real nematics.

Under these conditions (namely in an external magnetic field H. < H < Hp) the
quadrupolar forces give repulsion between droplets (as can be easily seen from (5)),
and the chain structure will therefore be broken. To find the structure which will arise
as a result of this quadrupolar repulsion (o 1/R®) one has to take into account the
others forces acting in such a system. The most relevant among these are the van der
Waals forces. These forces lead primarily to a certain contribution to the internal energy
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of each droplet. This internal contribution can be calculated using the general method
elaborated by Dzyaloshinskii, Lifshitz, and Pitaevskii (see, e.g., [10]; some features of this
contribution which are specific to nematics and which give, in particular, a renormalization
of the Frank moduli, have been studied in [11]).

For us it is more relevant that the van der Waals forces lead to attraction between
droplets. This attraction is anisotropic; in any case, however, the average over a sphere
is nonzero. Thus we have a rather unusual situation: a system of particles with, say,
“long-range” (1/R®) repulsion and “short-range” (1/RS) attraction.

The detailed calculation of all possible configurations for such systems would address
a very complicated kinetic (and statistic) problem which is beyond the scope of our paper.
A more modest aim we have is to describe qualitatively the consequences of quadrupolar
forces. At this level it is clear that in the presence of both forces (the quadrupolar and van
der Waals) the droplet distribution can be characterized by a certain specific length scale
A. The above discussion of the forces assumed 1/R° or 1/R® laws for the interactions
between isolated molecules. To find the total interactions between two mesoscopic spheres
one has to sum of all individual interactions. This reduces to evaluation of the following

integral:
1
I= /dsrl‘/darz's,:, (11)

5% = [(R+ 2L — ry cos 03 — 11 cos 6;)* + (rz sinfy — 7 sin6;)?], (12)

where

and the exponent o = 3 for the van der Waals interactions and a = 5/2 for the quadrupo-
lar interactions. In the simplest case R « L it follows from (11)—(12) that

L L
Ivdwocﬁ, IQO(IHE.

Now we are in position to estimate the characteristic cluster scale as the scale at which
the van der Waals attraction is of the same order as the quadrupolar repulsion. Putting
together all dimensional factors, we get

hvaoZa'l? L

a T
where ap is the electronic polarizability and v is a characteristic frequency that can be
identified with the first ionization potential of the molecules, which usually falls in the
ultraviolet region (the meaning of all the others parameters has been explained above).

3. We calculated the electrostatic quadrupolar interaction between spherical nematic
droplets in an isotropic (and nonconducting) liquid. It has an anisotropic form U, o 1/RS,
where R is the distance between droplets, with repulsion for droplets having parallel
orientation of the quadrupole moments and with attraction at oblique angles around the
orthogonal orientation. In an external magnetic field ordering the orientations of the
quadrupole moments, a competition of the quadrupolar repulsion and van der Waals
attraction (Uyqw o 1/R®) leads to a specific spatial aggregation of droplets that has in
fact been reported often in experimental observations (see, e.g., [1], [8], [9], [12], [4] ,
(13]). Results analogous to those given above should be applicable as well to colloidal
suspensions of quadrupolar polarizable particles in a less-polarizable nonconducting fluid.

A~
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Obviously the above description is rather simplistic and does not include any unwel-
come effects, namely:

i) Charge screening. To neglect this effect we assumed that the isotropic liquid is
ideally nonconducting.

ii) Depletion [14], [13]. It leads only to a short-range attraction between spheres with
a characteristic scale of the order of I.

iii) Coarsening and coalescence. Neglecting these processes is a good approximation
at a sufficiently small droplet concentration.

iv) Flexoelectric polarization. Flexoelectricity in nematic liquid crystals is a phenom-
enon that has been studied in many publications for over a decade (see, e.g., (2], {8]). It
is known (2] that deformations of the director field in nematics can create a polarization

P; = e;(ndivn) + eg(rotn) x n,

which involves two coefficients with dimensions of electric potential. In the case of mole-
cules which are very asymmetric in shape and carry a strong electric dipole moment uy
the flexoelectric coefficients might reach values of order p24/12. In all other cases (and in
particular in the case under consideration, when the molecules do not have a permanent
dipole moment) they will be smaller. Rough estimates of these coefficients based on cal-
culations of the fraction of the molecules which achieve the necessary ordering of their
dipoles to ensure the maximum packing density give [8]

e o NY3/T,

where N is the number of molecules per unit volume. Thus the corresponding electric
field (proportional to N'1/3) will be small in comparison to the quadrupolar field, which
is proportional to N. Note also the following difference between the two kinds of polar-
izations. The quadrupolar polarization (at least in principle) can be nonzero even for
n = const, while the flexoelectric polarization is proportional to gradients of n.
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