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An event horizon for “relativistic” fermionic quasiparticles can be constructed in a thin
film of superfluid 3He-A. The quasiparticles see an effective “gravitational” field which is
induced by a topological soliton of the order parameter. Within the soliton the ”speed of
light” crosses zero and changes sign. When the soliton moves, two planar event horizons
(black hole and white hole) appear, with a curvature singularity between them. Aside
from the singularity, the effective spacetime is incomplete at future and past boundaries,
but the quasiparticles cannot escape there because the nonrelativistic corrections become
important as the blueshift grows, yielding “superluminal” trajectories. The question of
Hawking radiation from the moving soliton is discussed but not resolved.

PACS: 04.70.Dy, 67.57.-z, 67.57.Fg

Introduction. Condensed matter systems can serve as a useful model to study
problems related to black-hole event horizons 1, 2]. Recently we found that moving
textures in a quantum fluid — superfluid ®He-A — provide for us the possibility to study
quantum properties of the event horizon, including Hawking radiation [3, 4]. However in
that example the Hawking radiation was essentially masked by Schwinger pair creation
outside the horizon, which appeared to be the main mechanism of quantum dissipation at
zero temperature. Here we discuss another texture, where now the Hawking radiation may
dominate. This texture is a soliton, which is topologically stable in a thin film of superfluid
3He-A. Our work is partially motivated by recent success in experimental study of thin
superfluid *He films, where the density of superfluid component was measured using the
third sound technique {5].

Order parameter and quasiparticle spectrum. The orbital part of the order
parameter of the A-phase state in thin films is characterized by a complex vector which
is parallel to the plane of the film:

P=e t+ie;, e Lz, eyl 3z, (1)

where the axis z is along the normal to the film. This vector characterizes the Bogoliubov -
Nambu Hamiltonian for the fermionic excitations in the 3He-A vacuum:

H=vr(p-pr)T3ter-ph —er-pHh. (2)

where 7, are the Pauli matrices in the Bogoliubov — Nambu particle-hole space, and we
neglected the conventional spin degrees of freedom. The square of the Hamiltonian matrix
H3 = E?(p) gives the square of the quasiparticle energy spectrum:

E*(p) = v} (p — pr)® + (e1-P)? + (2 - p)2. | (3)
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The simplest realization of the equilibrium (vacuum) state of 3He-A is e§‘*‘1’ = ¢, % and
egeq) = ¢, ¥, where the parameter ¢; ~ 3 cm/s at zero pressure. All the other degenerate
states can be obtained by the symmetry operations: continuous rotations about the axis
z and discrete w-rotation about a perpendicular axis. The vacuum manifold consists of
two disconnected pieces which can be transformed to each other only by the discrete
transformation. This results in the topological solitons — domain walls.
Domain wall. If the domain wall is parallel to the plane ¥, z the order parameter has
the following form ‘
e;(z) = (2)x , ex(x) = ¥(2)y. (4)

Across the soliton either the function ¢®(z) or the function ¢¥(z) changes sign: both cases
correspond to the same class of topologically stable soliton and can transform to each
other. The horizon appears in the former case, and for simplicity we choose the following
Ansatz for such a soliton

c%ﬂ=g,cﬂ@=—qmﬂg. (5)
It is close to the solution for the domain wall obtained in Ref.[6] (see Fig. 3b of Ref.[6]).
Here the thickness of the domain wall d ~ 1000 A and is of order the thickness of the
film [5].
“Relativistic” spectrum. We are interested in the low-energy quasiparticles, which
are concentrated in the vicinity of momenta p = +prz. Close to these two points the
quasiparticle energy spectrum becomes: '

E*(p) = ¢ (p: Fpr)* + ((2)p=)* + AP, ¢ =vr, (6)

up to terms of order p4 /m2, where m, = pr/vp. After shifting the momentum p, (6)
can be rewritten in the Lorentzian form

9" pupy = 0. (7)

Here p, = (—FE, p;) is the four momentum, and the nonzero elements of the inverse metric
are given by
9" =1, g¥=—df, ¢¥=-cl, ¢°=-(()" (8)
Thus in this domain wall the speed ¢®(z) of light, propagating across the wall, changes
sign. This corresponds to the change of the sign of one of the vectors, e, of the effective
vierbein in Eq.(4).
Effective space-time induced by stationary soliton. The line element corre-
sponding to the inverse metric in Eq.(8) is (ds?)s;1 = (ds®)141 —c]2dy? - cﬂzdzz, with
(ds®)141 = dt® — (c*(z)) "2 da?, (9)

We emphasize that the coordinates t, z, y, z are the coordinates of the background Galilean
system, while the interval ds describes the effective Lorentzian spacetime viewed by the
low-energy quasiparticles.

The line element (9) represents a flat effective spacetime for any function ¢®(z). The
singularity at # = 0, where g°® = 0, can be removed by a coordinate transformation.
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In terms of a new coordinate ( = [ dz/c®(z) the line element takes the standard form
dt? — d¢?. With ¢?(z) given by (5) { diverges logarithmically as & approaches zero. Thus
(9) is actually two copies of flat spacetime glued together along the line z = 0 where ¢*(z)
vanishes. This line is an infinite proper distance away along any spacelike or timelike
geodesic. The two spacetimes are disconnected in the relativistic approximation, however
this approximation breaks down near z = 0 and the two halves actually communicate. One
must also keep in mind that invariance under general coordinate transformations holds
only for the physics of “relativistic” low-energy quasiparticles, but not for the background
superfluid and high-energy “nonrelativistic” excitations. The singularity at z = 0 is thus
physical, but is unobservable by the low-energy quasiparticles since the Ricci scalar is
zero everywhere.

Effective space-time in moving domain wall. Let the soliton move relative to
the superfluid: v = v,, — v, = vZ, where v,, and v, are the velocities of the domain wall
and superfluid condensate respectively. The energy spectrum of the quasiparticles is well
defined in the soliton frame where the order parameter is again stationary; it is Doppler
shifted:

E(p) = :tv Cﬁpf + Cipg + (c*(2)p2)? — pev . (10)
This leads to the following modification of the 1+1 (¢, z) metric elements:
gz:c — ,02 - (c”(:c))z , gOD =1, gOa: = . (11)

Here now z is the “comoving” coordinate, at rest with respect to the soliton. The line
element in this 1+1 effective metric takes the form:

(ds?)141 = dt? ~ (c*(z)) - (dz + vdt)?, (12)

which also follows directly from the Galilean transformation to the moving frame. Simi-
lar metrics occur in 3d textures such as [-solitons moving in *He-A [3] and quantized
vortices [7].

(%) €X(-00)
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— i —\| — E > X
A [l =
'xh:l 0 !Xh - - M : ”»
white hole. 'black hole F'xg.l. The “speed of light” in the -
horizon: 'horizon direction in the soliton frame, ¢®(x), for
! : the singular soliton in thin films of 3He-A.
R N L The speed of light crosses zero at z = 0.
1 eX(400) For the moving soliton the black and white
cX(x) hole pair appears for any velocity v below
e (o0}

With ¢; > v > 0 the effective spacetime geometry is no longer flat but rather that of
a black hole/white hole pair (Fig.1). The black hole and white hole horizons are located
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where |¢*{z)| = v, at positive and negative = respectively:
tanh(zp /d) = £v/c,. (13)

The positions of the horizons coincide with the positions of the ergoplanes, since the
metric element '

goo = 1 - v*/(c*(z))>. ‘ (14)

crosses zero at the same points as g*<.

It follows from Eq.(13) that if v approaches the asymptotic value ¢t of the speed of
light, i.e. e¢; — v < c1, the positions of the horizons move far away from the £ = 0
line: |zx| 3> d. At these positions the gradients of the order parameter are small, so that’
the quasiclassical spectrum in Eq.(10) and thus the description in terms of the effective
metric can well be applied near the horizons, even if the thickness of the soliton d is of
order £, the coherence length. '

The line z = 0 is now at finite proper time or distance along some geodesics (although
still at infinite proper distance along a t = constant line). For example, z = —uvt (a
point at rest with respect to the superfluid) is a geodesic along which ¢ is the proper
time, which is clearly finite as £ = 0 is approached. Moreover, z = 0 is now spacelike,
and the curvature diverges there. It is therefore akin to the singularity at » = 0 inside a
spherically symmetric neutral black hole. '

The Ricci scalar for the line element (12) is (we removed index z in ¢*)

2

-z (15)

v? | 4v?
R = 2-0-2—(66” - 2(Cl)2) = —F

As z — 0 this diverges like —(2v/z)? for any nonzero v. For v = 0, the spacetime is flat,
as noted above. At the horizon R = —(2¢, /d)*(1 — (v/c1)*). Note that as v — ¢, the
curvature at the horizon goes to zero.

The positive z piece of (12) has the causal structure of regions I and II of the Penrose
diagram (Fig.2a) for the radius-time section of a Schwarzschild black hole, while the
negative z piece has the structure of regions IIT and IV. These two pieces fit together as
shown in Fig.2b.

The causal diagram reveals that the physical ranges of the coordinates ¢t and & do not
cover a complete manifold in the sense of the line element (12). Geodesics of finite length
can run off the thin dashed line boundary at the lower edge of region I or the upper edge of
region I1I in Fig.2b). This at first appears paradoxical: how could a quasiparticle escape
from physical space and time in a finite “proper” time (or affine parameter along a lightlike
geodesic)? The answer is that the energy in the superfluid frame would diverge at the
edge where t goes to infinity. (due to the “gravitational blueshift”), but before it actually
divergens the higher order terms in the dispersion relation (3) become important, and the
quasiparticle is deflected from the trajectory governed by the metric (12). For example, if
we follow an outgoing q.p. backwards in time towards the horizon, relativistically it would
run off region I into region IV in Fig.2a. In fact, however, as it gets close to the horizon,
its momentum grows until (10) no longer holds. The higher order term p% (vr/2pF)? in
the dispersion relation (3) gives the q.p. a “superluminal” group velocity vrp, /pr > cL
at large p., so it crosses the horizon backwards in time and runs into the singularity.
Whether it survives this encounter with the singularity we do not yet know.
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Fig.2. Penrose diagrams. The horizontal thick solid lines
represent curvature singularities. The solid lines at 45° are
at lightlike infinity; (a) — is the diagram for a spherically
symmetric neutral (Schwarzschild) black hole. The thick
dashed line is the black hole horizon and the thin dased
line is the white hole horizon. (b) ~is the Penrose diagram
for the moving thin film soliton, which can be constructed
by cutting Fig.a along the thick dashed line and glueing
the two pieces together along the singularity. Here the
thick dashed lines are the black and white hole horizons at
£ = +xp, while the thin dashed lines are boundaries where
the effective relativistic spacetime is incomplete. However,
the diagram represents all of physical space and time (see
text)

Quantum dissipation by Hawking radiation. In the presence of a horizon the
vacuum becomes ill-defined, which leads to dissipation during the motion of the soli-
ton. One of the mechanisms of dissipation and friction may be the Hawking black-body
radiation from the horizon [8], with temperature determined by the “surface gravity”:

h de®
Ty = 27'rk5’i’ K= (%)h (16)

In our case of Egs.(5), (12) the Hawking temperature depends on the velocity v:

To(v) =Tr(0) (1 - v*/c) , Tu(0) = hey /2nkpd. (17)

Typically Ty (0) ~ 1 uK, however we must choose v close to c; to make the relativistic
approximation more reliable. This Hawking radiation could in principle be detected
by quasiparticle detectors. Also it leads to energy dissipation and thus to deceleration
of the moving domain wall even if the real temperature T = 0. Due to deceleration
caused by Hawking radiation, the Hawking temperature increases with time. The distance
between horizons, 2z, decreases until the complete stop of the domain wall when the two
horizons merge {actually, when the distance between them becomes comparable to the
“Planck length” £). The Hawking temperature approaches its asymptotic value Ty (v = 0)
in Eq.(17); but when the horizons merge, the Hawking radiation disappears: there is
no more ergoregion with negative energy states, so that the stationary domain wall is
nondissipative, as it should be.

At the moment, however, it is not very clear whether and how the Hawking radiation
occurs in this system. There are several open issues: (i) The particle conservation law
may prevent the occupation of the negative energy states behind the horizon. (ii) Even if
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these states can be occupied they may saturate, since the quasiparticles are fermions, thus
cutting off further Hawking radiation. (iii) The appropriate boundary condition for the
Hawking effect may not hold: the outgoing high frequency modes near the horizon should
be in their ground state. These modes come from the singularity, since they propagate
"superluminally”, so the physical question is whether, as the singularity moves through
the superfluid, it excites these modes or not. (iv) Even if this boundary condition holds
initially, the mechanism discussed in [9] of runaway damping of Hawking radiation for
a superluminal fermionic field between a pair of horizons may occur. (v) Although the
Hawking temperature (17) can be arbitrarily low for v near c., this is the temperature
in the frame of the texture. Perhaps more relevant to the validity of the relativistic
approximation is the temperature in the frame of the superfluid, which is given by T,y =
T (0)(1 + v/cL). This is never lower than Tg(0) ~ hcy/d ~ m.c} if d ~ ¢, which
is just high enough for the nonrelativistic corrections to be important near the peak of
the thermal spectrum. Thus, unless the width of the soliton d can be arranged to be
much greater than the coherence length £, only the low energy tail of the radiation will be
immune to nonrelativistic corrections. We leave these problems for further investigation.

We expect that as v — 0, the entropy of the domain wall approaches a finite value,
which corresponds to one degree of quasiparticle freedom per Planck area. This is simi-
lar to the Bekenstein entropy [10], but it comes from the “nonrelativistic” physics at
the “trans-Planckian” scale. It results from the fermion zero modes: bound states at
the domain wall with exactly zero energy. Such bound ‘states, dictated by topology of
the texture, are now intensively studied in high-temperature superconductors and other
unconventional superconductors/superfluids (see references in [11] and [12]). When v # 0,
there must be another contribution to the entropy, which can be obtained by integrating
dS =dE/T.
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