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We introduce the concept of “breathing” solitons to describe optical-pulse
dynamics in trensmission lines with passive compensation of fiber chromastic disper-
sion. The “breathing” pulse can be used as the information carrier. The presented
theory is complementary to the concept of the guiding-center soliton. It is shown
that an average bright soliton can propagate in the system with large variations of
dispersion, including segments with high normal dispersion.

PACS: 42.50.Rh

In this Letter we examine optical pulse transmission in cascaded communication
systems. It is well known that picosecond optical pulse propagation in lossless
fibers is described by the integrable nonlinear Schroedinger equation (NLSE). A
powerful method of the inverse scattering transform (IST) has been applied to the
NLSE [1], and it was shown that solitons determine the asymptotic states of this
system. In long transmission lines, however, the dissipation plays a prominent role
in the pulse dynamics. To overcome the decreasing of the soliton amplitude due to
attenuation, periodic amplification of the signal is needed. It is not evident that
the soliton survives non-integrable modifications of the NLSE, because perturbations
(losses and amplification) typically are not small effects in cascaded systems. The
basic element of an optical communication system 1s a piece of transmission fiber
followed by an optical amplifier. An optical pulse propagating along such a line
must be periodically reproduced at the output of each element. Transformation of
the pulse after propagation in the fiber element and amplification can be considered
as a mapping of the input pulse into the output pulse. Therefore, the carrier
of one bit of information must be a stationary point of such a mapping. The
condition for stable information transmission through the whole line leads to the
requirement of the stability of this stationary point. '

Both of these requirements can be satisfied in modern transmission systems
based on low dispersion fibers. In this case, pulse propagation between two
amplifiers can be considered as linear and non-dispersive. The main effect is the
decreasing of the pulse amplitude due to fiber losses. The linear character of
the process and a proper choice of the coefficient of amplification provide the
stationarity of the mapping for a pulse of arbitrary shape. As has been shown in
[2-5], the slow dynamics of a pulse is again governed by the NLSE. Therefore, the
stable soliton solution of NLSE, which has been named the “guiding-center” (or
average) soliton, represents the carrier of information in such dissipative systems.

Recently, an alternative approach to optical data transmission at 1.55um, based
on dispersion compensation technique, has been come into focus of intensive re-
search. The incorporation of a piece of fiber with high normal dispersion reduces
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the total dispersion of the fiber span between two amplifiers. This m.ethod has
many advantages: it is compaiible with the present concept.of allﬂo;?tu:al trar_ls~
parency of the system, it is cascadable, and it allows one to.mczease ihe cz?pac.lty
of the existing optical lines based on standard highly dlspers.wc telecoxmr.mmcatlon
fibcrs. Dispersion-compensating fibers (DCF) have been used in the'experameuts.[ﬁ,
7] to overcome fiber chromatic dispersion in optical transmission lines. Numerical
simulations of soliton data transmission in short standard menomode fiber (SMF)
systems, upgraded by dispersion compensation, have been performed in [8]. Recent
technological achievements, such as the design of chirped fiber grating (see the
review in [9]), allows dispersion of 500ps/mm or even move to be compensgted
by a grating fiber of a few decimeters in length. But even using commercially
available DCFs leads to a significant upgrading of networks. We also mention that
a coustruction of a dispersion-allocated solitor iransmission line using dispersion-
shifted fibers has been studied receutly in [10]. Cascaded transmission systems
based on the direct dispersion compensating technique have great potential due to
high-capacity, low-error bit rate, and low cost. _

In this Letier we present a theory of optical pulse propagation in transmission
systems using dispersion compensation technigque. As a result of our research, a new
concept of “breathing sclitons” has arisen, which complements the center-guiding
soliton theory presented in [3, 2], although these two concepts have different bases.
We demonstrate that an average bright soliton can propagate along the line even
in the presence of segments with high normal dispersion.

The evolution of optical pulses in an optical fiber is described by the modified
NLS equation.

INL

~ “D(2)¥y + |2 = i G(2) T (1
dis

W, +

where

N
G(2)¥ = Zyp(—7 + (exp(Za7y) — 1) }:6(: - zx))¥.
k=1

Here, the time is normalized by the initial pulse-width ¢ =T/, the envelope of
the electric field ¥ = E(T, Z) is normalized by the initial pulse power |E|? = Py|¥!2,
and the coordinate along the fiber z by the nonlinear length z = Z/Zy;. Here
vy describes fiber losses, Zy =kZ, (k=1,..,N) are the amplifier locations; Z, is
the amplifier spacing. There are three characteristic scales in this problem: Z,,
Znp = 1/(aPy) — the nonlinear length and Zg, = 2t3/|8;1 — the dispersion length
corzesponding to the SMF. (In the system under consideration there exist, in
fact, three dispersion scales: the dispersion lengths corresponding to the chromatic
dispersion of the DCF, SMF and the dispersion length related to the residual
dispersion of each section Zpg). The symbol B, denotes the group-velocity
dispersion, « is the coefficient of nonlinearity.

Consider a transmission line consisting of periodic alternating fiber sections
and point optical amplifiers. We study, without loss of generality, the so-called
precompensating scheme: a piece of DCF with the dispersion D_ and length Z,
is followed by a piece of SMF with the dispersion D,. In the ideal line, the
dispersions should be completely compensated; in practice, however, there is always
some residual dispersion. Pulse propagation through the transmission line can be
described in the first approximation as follows: at first, during propagation through
the DCF, pulses broaden dispersively and acquire a positive dispersion-induced
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frequency chirp; during the evolution through the SMF, pulses compress because
the sign of the dispersion has been reversed and the condition for compression
is satisfied (see e.g. [l11]). Thus, the pulse experiences breather-like oscillations.
After pulses propagate through both pieces of fibers, they must be amplified to
compensate fiber losses. This entire process, including the amplification, is then
repeated. The dispersion and fiber losses are the main acting factors over one
cycle of the process. The influence of residual dispersion and the Kerr nonlinearity
appears at distances large than Z, (namely, at Zpr and Zyp). Thus, in the
description of a “slow” evolution of a pulse, it is necessary to take into account
both the residual dispersion and the nonlinearity.

Let transform, following (2, 3], ¥ to a new function A by eliminat-
ing rapid oscillations of the amplitude due to the periodic amplification
¥ = A(t,z)exp(f, G(z')dz’). The equation for A can be written in Lagrangian
form with the Lagrangian L as

S=/Ldtdz=/dtdz [%(AA: —ATA)+ %"_io(z)w— C_(zflw* V)

Here c(z) = exp(2 [, G(z')dz’) can be represented as a sum of rapidly vary-
ing and constant parts c(z) = (c¢(z)) + é(z), where (&(z)) = 0 and (c(2)) =
[1-exp(—2724)]1/(2724). We also write D(z)=(D(z))+ D(z), where (D(z)) =0 and
(D) =(D-z. + Dy(24 — 2:))/24 is a small perturbation due to the average residual
dispersion ((D) ~ Za,/Zpr < 1).

In the limit Z,,Z4, € ZnyL, one may treat the nonlinearity as a pertur-
bation. At the lowest order, fast oscillations of the pulse-width are given by
a solution of the linear problem A(z,t) = ffg dwA, exp (iwt — w?R(z)) with
R(z) = foz D(€)d€Zn1,/Zais. Nonlinear effects come into play on a large scale
compared to Z,, namely at distances proportional to Zyr. The concept of the
guiding-center soliton considered in [2, 3] corresponds to the limit Z, < Zyr = Zy,.
In this Letter we study another regime with Zyp > Z, ~ Z4,. The existence
of small parameters Z4,/Zpr and Z,/Zyp allows us to introduce fast and slow
scales. The fast process corresponds to the oscillations of the amplitude and the
shape of the pulse due to the dispersion compensation and periodic amplification,
and slow dynamics describes the average changes due to the nonlinearity and resid-
ual dispersion. Therefore, we assume that A, varies slowly with z and represent
the function A(z,t) in the form

+o00
A(z,t) = dwQ, (z) expliwt — w?R(z)). (3)

-0
To obtain the equation for the slow average evolution of A(z,t) we substitute (3)
into L, and average the Lagrangian L over the interval Z,. Because the function
Q(w,z) is assumed to vary slowly on the scale of the amplification distance, it
can be placed outside of the averaging integral. After straightforward calculations
we obtain the Lagrangian describing the evolution of the slowly-varying envelope.

S = /Edtdz - /dzdw [%(Qqu, ~QLQu:) + %E(D(z))wﬂqu -

/dzdwldtdzdwsdw4Qw1szQ:,,QI,.é(wl +wz — w3 — wg) F (w1, wa, w3, wye), (4)
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where the function F is given by

F= 1 —exp(—2vZ.(1 + igD_))
8ywZ,(1 +igD_)

+exp(—2’ch — ivgD+(Zc — Z,)) - exp[-2vZa(1 + ig(D))]} (5)
and o= (] +03 — o] - w)/(2yZus). |

Thus, the equation describing the slow evolution of Q. can be obtained by
taking the variation of the functional S:

iaQ"’ (z) _ w? ZNs (D(2))Qu(z) + 2/ dwidwadwaFé(wy + wz — w — w3)Qu, Qu,Q%, =0
9z Zdis (6)

Equation (6) governs the average dynamics of “breathing” pulses. It can also
be derived by direct averaging of the original equation [12]. As it was shown
in [12] Eq. (6) can be further simplified in the case Zpgr/(vZaisZnL) <K 1. In
this limit, in the time domain, at the leading order, the equation describing the
average dynamics of breathing solitons is again the NLSE:

v, + Zf Uee(D(2)) + (c(2))[UPU = Ry (7

Hete U =U(t,2) = V;Tfjo:o €“'Q.(z)dw is the slowly-varying part of A. The
term R, describes the higher-order corrections in Z4,/Zpr and Z,/Zny.

An alternative approximate approach to describing breathing-pulse propagation
is based on the direct use of the variational problem (2). Using the well-known
solution of the linear problem we now substitute in the variational problem (2)
the following trial function

t . v(z

Az, t)=a(2)f [b—(z} exp [z)\(z) + Zb((z))tz} , 8) '
here f(z) is a function corresponding to the initial pulse profile. Using the Ritz
optimization procedure we obtain the variational equations with respect to a, o~,
b, A and v. After some simple calculations (a similar approach has been used in
other problems in [13], where more details of procedure can be found), we obtain

the equations describing the oscillations of the pulse width 5(z) and the pulse
chirp v/b

- 4ZNL - ZNLD(z)Cl _ C(Z)N202 9
Zgis Z 45503 b2 ®)

Here D(z) =Dz, N®=a%=const, C; = [*2|f,|%de/(f1° 22|f)2dz),

Cy = j;o [f]4dz/(4fj:: z?|f|*dz). For instance, for the soliton shape f(z) =sech(t),
C1 =2C; =4/x%. To describe the propagation of the initial pulse in the form
A(0,t) = N rmsech(t), we fix as initial conditions to Eq. (9) b|.—o = 0 and
v|;=0 = 0. Equations (9) must be solved in the first (D = D_) and second
(D=D,) fibers and at z=2. we require b_=b, and v_=v,.

In the limit Z;,Z4, < Znyp, one may again treat the nonlinearity as a
perturbation. At the lowest order, fast oscillations of the pulse amplitude and

b, D(2)v; v,
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width are given by the solution of the linear problem

2 2
d*Bs _ 162}, D(z) (10)
dz? n2Z% B3

The solution of this equation has the form B% =1+ I6R%(z)/#%. It follows from
here, in particular, that a small change of b over period due to residual dispersion
is given by be, = |4(D(2))Za /(de,,)i >0

To obtain the equation governing small changes of 5(z) due to nonlinearity, we
linearize Eq. (9) about the linear solution By assuming b= B3 +64 and by <« By

4ZN1
Zriis

IZZNLD(Z)E 2¢(z)N?

- 11
7224, B* »2B? (1)

b, = D(z)7; D, =—

Here and in what follows we drop * to avoid complex notation. Initial conditions
to Eq. (11) at z=0 are: b=0 and & =0. Solution of Eq. (1I) with these

conditions is found as

- 8ZNLD NZ y/y C((C)Bz
= —_ 12
b =S / 5 [ e (i2)

i *dy 8ZyyDiN'B,
bt b f B wlu / /

32 (13)

Coefficients 7; and r; are determined by matching of these solutions at z = z.
Resulting change of the pulse width due to nonlinearity over one period in the
main order is given by

= NZZNL
b+(za)= ’7I'Zd, D /

B3 d _D /'Za z) Zu—Z) y] (14)

In the case we consider here D_ < 0, D; > 0 and respectively b,(z,) < 0. One
can see that this compression of a pulse ( 54(z,) < 0) due to nonlinear effects can
balance slight dispersive broadening of a pulse due to residual dispersion (b,., > 0)
over one period.

Equations (9) give an approximate description of the breathing dynamics of
optical pulses in cascaded optical systems with dispersion compensation. As was
shown in [14], variational approach in the nondissipative NLSE is not applicable
to describe interaction of soliton with radiation. Therefore, one should be very
careful, making quantitative conclusions about solitorn interaction with radiation
from the developed above method. It should be combined with direct numerical
simulations. We would like to note, that on the distances of tens amplifications
distances (this case is of importance for Europe networks, for instance), this
approximate description of the pulse evolution is in a good agreement with the
results of numerical simulations [15]. A comprehensive analysis of the pulse
dynamics described by Eqs.(9) will be presented in a subsequent publication [15].

In conclusions, we present a concept of a “breathing” average soliton in optical
transmission systems. We have derived an averaged equation for the evolution of the
slowly-varying envelope of the optical signal propagating in cascaded transmission
lines with periodic amplification and dispersion compensation. In the span between
two amplifiers, a pulse experiences strong attenuation and large-width oscillations.
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We have presented an approximate variational approach that allows us to describe
puise amplitude and width oscillations without averaging. We have demonstrated
that a bright soliton can propagate in the fiber system with segments of high
normal dispersion under condition Zpgr/(vZngZ4is) < 1
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