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The exact wave function for a one-dimensional chain of electrons coupled with
squeezed phonons is obtained. The ground state energy and the gap in the electron
spectrum are calculated. It is shown that there exists an optimal phonon number
nPh 20 for the ground state of the system. The results are generalized for a system
of correlated electrons.
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The adiabatic approximation becomes less accurate in the presence of a strong
anharmonic electron—phonon interaction, and the displaced-oscillator state does not
properly represent the real phonon ground state[l]. For example, anharmonic
coupling leads not only to a finite rigid displacement but also to a deformation
of the phonon wave functions describing the squeezed phonons. For 3D systems
this new ground state is known from the parametric photonic processes in quan-
tum optics and is characterized by a super-Gaussian distribution with enhanced
fluctuations of the particle number in comparison with the more familiar equilibri-
um Bose-Einstein distribution[2]. It has been shown [3] that phonon correlations
together with electron-squeezed-phonon coupling have a substantial effect on the
superconducting properties of a system. '

It is of interest to consider the influence of the electron-squeezed-phonon
coupling on the ground state properties of a system. In [4] an integrable chain
of electrons coupled with harmonic phonons was considered. Here we construct
an exactly solvable (via the Bethe ansatz) one-dimensional model of electrons
interacting with squeezed phonons[5]. The modified electron hopping provides for
decoupling of the electron and squeezed-phonon (rather than the initial harmonic-
phonon) variables. We construct the exact wave function and calculate the ground
state energy and the gap in the Fermi spectrum on the basis of the Bethe ansatz
for the attractive Hubbard model [6].

We start with the Hamiltonian of tight-binding electrons interacting with local
squeezed phonons at each site. The electron hopping is modulated by a term that

')On leave from Institute of General and Inorganic Chemistry of the RAS, 31 Leninskii
prosp.,GSP-1, Moscow 117907, Russia.
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depends on the phonon variables:

H= Hhopp + Hon—u'tey
Hon_gite =0 510 — Y (nir +na (87 +8]) — 1) nio,

Hyopp = —1 Z e"""c;';c,',e"f‘, ()
{s5)e
where 1 2 2
Vio = —Z{tanh“llﬁgnja] - tanh'llhg—("n +n )]HEF - () =

29Qn;,
A7 Ag3(nso + e

= [tanh™" 185 - (65)%). (2)

Here ¢l (cis) are the electron creation (annihilation) operators and b*(b) are
the phonon creation and annihilation operators, [b,b*] = 1. For small g/Q the
electron hopping can be written approximately as

2
Haopp ~ —t Y, chycio{l + 3 (nio (8] = (6)7) = nio (67 — (6)"))}-
(i)

We see that it can be treated as correlated hopping that is dependent on the
phonon numbers. We note that in the simplest mean field approximation (when

the phonon operators b} and b; are replaced by vt ") the correlation terms in
the hopping term are zero.

The wave function of this Hamiltonian can be obtained exactly. The unitary
“squeezed-phonon” transformation [7] of the phonon operators

bf = e""(“""(“?)z)ﬂfe"“'(“?’(“?)’) =a} cosh 2x; + a; sinh 2x;,

b = ex‘(“?'(“?)z)a;e‘x‘(“?‘(“?):) = a] sinh 2x; + a; cosh 2y, 3)
4y; = tanh™?! %(nq + n4y),
transforms the on-site term of the Hamiltonian in the following way:
Hon—site = Zmafai, (4)
where

n; = Qcosh 4x;] ™! =
=Q[1 + (2 + cosh(4 + 2B) — cosh A — 2cosh B)n;tn;;+
+(cosh B — 1)(niy + nqy),

A=tanh™! % — 2tanh™! -29—9, B =tanh'lgn£. (%)
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In the case under consideration, g < €1/2, the eigenfunctions of the on-site
squeezed-phonon Hamiltonian are square-integrable. By virtue of the idempotent
property of the n,, operators, n; has the following structure:

7 = (1 + znipni + y(nir + niy)). (6)

For small ¢/, the coefficients z and y can be calculated as perturbations of
first order in this ratio, and the on-site Hamiltonian takes the form:

2
Hon—site QZ ﬂ2 ntTnsl (gz ('niT + nil)) - I-"Z'nia)- (7)

Although the transformed on-site Hamiltonian has the functional form (4), (6)
for all g,€Q/2, the coefficients of n;;n;; and ni; + n;; should be calculated more
precisely as g increases. Let us calculate the exact wave function for a chain of
electrons with on-sxte part (7).

The operators a} and a; depend on the electron number at site i. They obey
the Bose commuta.tlon rule [a.,a ] = 8;j, but the vacuum for these transformed
phonon operators is defined as

j
[0) = ¢~} tam™* ZELGEE 47 (54)%) 8)
where np; is the electron number, and |0) is the vacuum for the initial operators

bt,b. It is easy to calculate the eigenfunctions and eigenenergies of Hamiltonian
(7) for a single site.

403 243
Honosite =011 = Zrmimy — T(np +n))ata. 9
In the absence of electrons
F{™ = (@) 10)10"*,  E{™ =nQ. (10)

Here and below n without indices denotes the phonon number. For one electron
with spin ¢ we get

.
F =t @00, BP = (1- Zna (1)

where n is the phonon number and the phonon vacuum is defined in accordance
with (8). For two electrons

2
B =t et @00, B =(1- ”, ). (12)

The energy nfl (10) can be regarded as the phonon contribution to the ener-
gy. Thus the “electron” contribution to the energy due to the electron—phonon
interaction can be considered as a sum of two parts: the one-particle energy
~2ng?/Q and the energy of attraction of the electrons —4ng?/Q). These are just
the energy levels for noninteracting phonons (nQl) and electrons with one-particle
energy —2ng?/01 and one-site attraction —d4ng?/Q.
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For a chain we seek an exact wave function of the system in the following
form:

T= ) flen. ,ZN.,U)H chion (el oz, an )OO (13)

Z1,:1FNe1@

Here

N N
0 = T 100, 10 = T] 10y,

m=1 m=1
N is the number of sites and N, is the number of electrons. The index o specifies
the spin projection variables of the electron amplitude f. We shall see that f
obeys the equation of the Bethe ansatz for the Hubbard model with negative
Hubbard energy U = —4¢%n/Q, and thercafter we shall drop the spin variables. We
note that the phonon amplitude & depends on the electron coordinates. We can
now show that if the phonon part of the wave function is chosen as a product of
one-site wave functions in accordance with the electron number at this site (i.e.,
in accordance with the diagonalization of the Hamiltonian (9)):

N
8(af,.afizs,zn,) [] (@) 10)2 (14)

m=1

then the electron part f obeys the equation for the wave function in the one-
dimensional attractive Hubbard model.

The phonon amplitude & depends on the electron coordinates through the
operators a} (Eq. (3)) and the vacuum |0>?h (Eq. (8)). This dependence appears
explicitly if the phonon amplitude is written in terms of the original b operators:

N
&(b},..b%; 21, ..zn,) [] 10V =

m=1

- T exp{ L ramn=22 Zaz,mxb’ - (b )’)}(b:.)"now:. (15)

m=1

Here n is the number of squeezed phonons. Let us show that n is a good quantum
number: [N;, H]=0, where N =a*a is the squeezed-phonon number operator. For
the on-site part of the Hamiltonian this relation is obvious if H,,_,. is written
in terms of the transformed phonon operators a (Eq. (7)), because the squeezed
phonon operators a},a; were defined in terms of the electron number operators
ni, rather than odd powers of the Fermi operators. The corresponding relation
for Hpopp can be derived using the original b operators. The squeezed - phonon
number operator N =ata depends on the number of electrons at the site and can
be written as :

N; = exp {-% tanh-l[%’i(nﬂ IR — (bj)’)} x
xb;'bj exp { % tanh'l[%(nn + n,'l)](b?- - (b}')z)} .
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We have to check that [Nj,e~Ywcf cjoe%ie]=[N;,e Vo c] cj,e%ic] = 0.
Since the operator N; commutes with the factor e""’c-‘t, it is sufficient to
check the commutator [Nj,cj,e”"] =0. We can verify this last commutator by a

direct calculation with simple algebra as

. 1 1.2 1 _1,2
cjoe"* Nj = cjs exp {—z tanh 1[Hgn.ﬁ](b? - (bj’)z)} b;.bj exp {z tanh l[énﬁ](bﬁ_

o exp { - v )2 557 o { &t 4 3

~(67)*)} =cjoexp {—% tanh‘l[%"ja](bﬁ - (b;')z)} x

1 1,2 ,
xb;-'b,- exp {z tanh l[énj,;](b? - (b}')z)} eviv,

It is easy to see that Njcj,e”’ has exactly the same form if we permute the
operator cj, on the left-hand side with the operator Nj;, using the following
relation for Njcjoe¥i*: f(njo,njz)cio = f(0,nj5)cjo = ¢jo f(0,n55), which is valid
for any function f that can be expanded in a Fourier series. We can check the
indentity [N;,e™Y¢;,]=0 in the similar way.

The action of the one-site Hamiltonian (7) on the wave function (13) results
in:

2 2

2‘"1:-,;9 _i';liz:&znj)f(zl,...z”,)x

Hon-site F™ = 3" (nf) -

T1...TN, i<j
N, N

i o= h

X ch'mé(af, G}, 1, - ZN,) H ()34
=1 k=1

The action of the hopping Hamiltonian results in:

N'
~t Y Y {f(z1micr, i — L zigy, TN, )+

T1... XN, $3

N, N
+f(z1y @iz, 2 + 1, Ziy1, ... 2N, )} H ct .08 ®(af, ..., a}, z1..2N,) H |0)2™.
=1 k=1

Because of the modulated factors in the hopping part, the electron arguments are
unchanged. Therefore the phonon part of the wave function can be separated.
The electron amplitude f obeys the equation for Hubbard model with negative
U =-4g>n/Q. Let us apply the results of [6] to our model.  We will not write
out the Bethe ansatz equations, which have been thoroughly described many times,
including in [6], where expressions were derived for the ground state emergy for
low and high electron densities p= N,/N. For low electron densities gt{l/4ng? < 1
we obtain

E® en’g* _ 2’ne 4ng?
n~2tg- Gt - F (e ) (16)
For high electron densities gtf}/4ng? > 1 we get
E™) > g'ng® 2%ng g*n?plog’(etQl/2ng?)
Mi-Ze-—p - -"@ "o 0%
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(> 57) (1)

The one-particle excitation spectrum has a gap which comes from the on-site
attraction, and for low electron denmsities (or for small hopping) this gap is the
binding energy of a pair. So, for small ot /4ng? <« 1:

2nigt

AE = oD

(1 + 0((9“1/471.92)3)) (18)

while for pt2/4ng? > 1 the gap has the following form:

AE= 4g\/2ne'1/ﬂ(%)3/2 exp(m?ap) exp(—w2 N .0t /4g° Nn) (19)

where ag = 0.11 [6].

We know from [6] that the ground state energy has a nonmonotonic dependence
on the number of squeezed phonons. Therefore, unlike the case of a chain of
electrons coupled with harmonic phonons[4], here the optimal number of squeezed
phonons that minimizes the ground state energy can be nonzero, n ¥0. The value
depends on the parameters ,t,g.

The effective negative Hubbard energy depends on the number of phonons. The
coupling parameter in the exponent in (19) is similar to the BCS one. We can
see also from (18) and (19) that the energy gap tends to narrow as the ratio
N Qt/g®’Nn increases. We note that a system of correlated electrons with Hubbard
energy I could be described in the same manner. In this case we should replace
our effective Hubbard interaction U = —4¢2n/Q by an effective on-site interaction
U=1I-49°n/Q. The formula for the ground state energy and gap should change
in accordance with this replacement, and for U > 0 the results of [8,9] should be
applied. The sign of Hubbard interaction in this case depends on the relationship
of I, g, 1, and n. The effective interaction becomes attractive for large enough
n.
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