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We propose a model for the simultaneous diffusion-limited growth of two
clusters A- and B-, where the growth of one cluster screens the growth of the
other one. We consider the possibility that the A and B clusters can penectrate into
each other in course of their growth in different spatial dimensions and express the
conjecture that the A-B boundary is flat in all dimensions. Using an electrostatic
analogy, we compute some spatial characteristics of the clusters.

Introduction. Since 1981, when Witten and Sander [1] invented the model of
diffusion-limited aggregation (DLA), interest in the investigation of the statistical
properties of DLA clusters has remained very great. The reasons for such steady
attention to various aspects of DLA models is accounted for by the following facts:
(i) DLA clusters have very unusual fractal properties, exhibiting a dependence of
the fractal dimension on the cluster size (i.e., so-called multifractal behavior); (ii)
DLA models have valuable physical applications for describing such phenomena as
breakdown in dielectric materials, the growth of “viscous fingers” in liquids, and
so on (see [2] for a review).

Despite essential success in describing the fractal properties of DLA clusters,
models of diffusion-limited aggregation appear to be mnot so simple for theoretical
investigations. In particular, conformal methods and the renormalization group
approach need some modifications on account of the forementioned multifractality.
Thus until now numerical simulations have remained the most reliable methods
for treating DLA. The many papers devoted to numerical analysis of different
modifications of the DLA model give rather comprehensive information about the
“goology” of these fractal objects. At the same time the interactions of immobile
DLA clusters have received much less attention in the literature.

In the present work we propcse a model for the interaction of two immobile
DLA clusters and pay particular attention to the structure of the interface between
these clusters. Namely, we examine whether DLA clusters can penetrate into each
other during their growth in different spatial dimensions. Let us mention also
that the model proposed in the present work establishes a bridge between two
different problems: diffusion-limited aggregation, and random walks in systems with
distributed (non-point-like) traps.

Model and Numerical Simulations. We formulate the model in a D-
dimensional space. Suppose we have two particles of two different kinds (colors)
A and B, which we place on a D-dimensional cubic lattice at a distance d from
each other (d is measured in units of the lattice spacing). These particles serve
as the initial (generating) points of A and B clusters.

Suppose that on the surface of a D-dimensional sphere S of radius Rp
(Rp > d), the center of which is placed at the midpoint of the segment connecting
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the initial A and B particles, we create, at a random point, particles 4 or B
independently with equal probabilities. The interaction between particles is defined
as follows (see Fig.1):

Fig.1. (a) Schematic model of “colored”
diffusion limited aggregation

1. If a randomly moving particle with color A (B) reaches a lattice point
neighboring to the initial (generating) particle A (B), then the diffusing particle
sticks to the initial particle to form a new initial cluster of two A (B) particles.

2. If a randomly moving particle with color A (B) reaches a point neighboring
to the initial cluster of particles L (A), then this diffusing particle disappears
(“dies”). If some lattice point is a common neighbor for both growing clusters A
and B, then any diffusing particle dies when reaching this point.

The question of our main interest concerns the structure of the interface
separating the growing A and B clusters. A priori the following situations could
be realized in the system under consideration: (i). For D > 2 the growing clusters
A and B penetrate each other by the branches, so that an interface does not
actually exist; (ii) spontaneous symumetry breaking occurs in the system, resulting
in the complete supression of the growth of one cluster by the other one; (iii)
clusters A and B grow in such a way that they do not penetrate each other
deeply. Of course, different structures among those described could be realized in
different dimensions.

The Ttesults of numerical simulations of the growth of A and B clusters
interacting according the rules proposed above are shown in Figs. 2-3, where the
most typical structures are shown for D=2, 3 and two different distances between
initial (generating) particles: d=2, 100. It can be seen that the A and B clusters
are non-interpenetrating. Below we adduce some theoretical conjectures in support
of the hypothesis that A and B clusters do not penetrate each other in any
dimensions and remain completely separated.

Let us mention briefly some technical details relevant to the numerical simula-
tions of the described model. We used the modification of the original method of
Witten and Sander proposed and utilized by Meakin [1]. We put a particle A or B
(the color of the particle is chosen randomly) at a random point of a d-dimensional
sphere S, the radius of which, Rp, grows dynamically with the formation of the
cluster. The particle then diffuses on a d-dimensional cubic lattice. If the particle
escapes the system, i.e., reaches scme point which is located at a distance of three
times the maximum cluster radius, R, it is killed and a new particle is created.
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Fig.2. Typical 2D-realisation of A-B cluster growth ("time series”) for d = 2, 100

Fig.3. Typical 3D-.realization of A-B cluster
growth ("time series”) for d=40 -

When the particle reaches one of the clusters, it attaches or “dies” in accordance
with the algorithm described above. To reduce the required computer time and
speed up the calculations we multiplied the elementary step of the diffusing particle
by a factor of 2, 4, 8, etc. if the particle was at distances of Ryax+10, Rpax+20,
Rpax +40, etc. from the origin [1]. A comprehensive investigation of the described
method of particle generation for the standard diffusion-controlled cluster formation
has been presented recently by Voss [2]. To produce the random choice of color,
initial position of the particle on the d-dimensional sphere, and direction of motion
of the particle we utilised the random number generator RAN3 described in [3].
In order to accelerate the procedure of checking the contact of a moving particle
with already existing clusters we used the method of so-called hash-coding with
linear probing as a collision-resolution scheme [4, 5]. Our programs were written
in Borland Pascal and run on a 60 MHz Pentium system. Because of computer
limitations we generated clusters of moderate sizes of up to 3000 particles in the
largest cluster. ‘

Discussion. 1. We believe that the fact of the mutual impenetrability of A
and B clusters is accounted for by two facts: (i) the absence of an upper critical
dimension in the DLA model, and (ii) the “spontaneous symmetry breaking” (or
fluctuational instability) in the initial stages of cluster growth.
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Recall that in the 2D case the fractal dimension Dppa of the ordinary DLA
cluster lies in the interval 1.5 < Dppa < 1.75 [8] and in higher dimensions (D > 1)
Dpua = D—-1 (Dpa<D-1) [9].

The absence of an upper critical dimension means that the DLA cluster will
grow almost completely fillng the free space on the lattice. Actually, the cluster
density p can be estimated as p ~ N/RP, where N is the number of particles in
the cluster and R is its sise (R ~ N/Pous), Thus we have p~ N-1/(P-1) _, |
for D» 1. Hence, if at some moment of time a part of the space is occupied
by the A cluster, then the growth of the B cluster in this part of space is
completely screened. In other words, the large-scale behavior of cluster growth is
determined by the fluctuations of diffusing particles and screening in the initial
stages of growth.

Let us mention that the same conclusion concerning the penetration depth can
be obtained if we consider the A-B colored - aggregation from the point of view
of statistics of diffusion-controlled reactions on fractals, i.e., if we regard the DLA
cluster (say, A) as a “distributed trap” for diffusing particles B. It means that we
forget about the specific structure of the cluster A and, in the volume occupied
by the cluster, put in “traps” with a mean concentration

p= g ~ NITDIPo, (1)

The particles B diffuse freely and penetrate the volume V containing the traps.
In the mean-field Smolukhovski-type approach we have the following expression for
the concentration C(t) of particles B in the volume V at time t (see [10] for a

review): o

o0) = exp (—p /0‘ dt’ Ksmol(N, t)) , (2

where the reaction constant Ksmoi(N,t) has the following asymptotic behavior [11]

KSmol(N) t)L_'co ~ NI/DD'I.A‘ (3)

Substituting Eq.(3) into Eq.(2) we get

C(t

E’% x exp (—Nl‘(D'l)/Dm‘* t) . &)
Thus the concentration of particles B diffusing in the volume V decreases ex-
ponentially with the time ¢. Using the obvious relation R ~ at!/3, we come to
the conclusion that the DLA cluster is completely “non-transparent” for diffusing
particles, which is consistent with the arguments presented above.

2. In order to have some quantitative estimates concerning the simultaneous
growth of A and B clusters, let us generalize our model in the following way.
We shall generate the particles of type A (B) with the probabilities ps > 1/2
(pB =1~ p4).

The structure of growing clusters resembles geometrically the structure of electric
field lines of two oppositely charged particles. Thus the boundary between A and
B clusters can be regarded as an equipotential surface. This analogy, supplemented
by the statement that the A-B boundary is flat, can be used for calculation of
the average angle inside which the smaller cluster is growing (see Fig.l).

507



We restrict discussion to the 2D case. In the framework of the electrostatic
analogy it is easy to write the 2D potential ¥(r) created at the point r by two
charges g4 > 0 and —¢p:

x|

a

_qunL"_:érAB_l, 5)

¥(r)=gsln
where |rsp]=d, while @ is regarded as a free parameter which we choose from a
comparison of the numerical data with analytical results. Let us stress that G has
the meaning of the “effective lattice cell” and has not yet been specified. In the
polar coordinates (p, ) we have

T 421
‘I'(r)-qun'é—qsln‘/" + - pdcosy. (6)
The equipotential surface ¥(r) =0 is determined by the equation
In /p?/a? + d?/a?® — 2(pd cos p)/a?
ﬂ - - ’ (7)
Inp/éd

where B=q4/qp. It is very natural to associate the value of B with the fraction
pe/(1 —ps) (ps < 1/2).
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Fig.4. Plot of the function cos ymaz(pp) (ZD-case). The solid line shows analytical results (é&=10);
the squares (a) and triangles (b) represent the averaged data of numerical simulations for distances
d =40 and d~ 100, respectively

To find the maximum value of the angle ¢max inside which the cluster B is
growing, we have to minimise the equation for cosp,

(p/&)Z + (d/a)2 _ (p/a)ﬁﬁ ' (8)
2(pd/a?) ’

cosp =

with respect to p.
A plot of the function coS@max(pp) together with the averaged value
(coS pmax(pp)) obtained from the results of the numerical simulations (for the
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2D model) is presented in Fig.4a,b for d =40 and d = 100. The averaging is
performed over 100-150 realisations of the clusters (or “time series”) for each
value of pp. The effective lattice spacing @ is the same in both cases, a=10. It
can be seen that the agreement of the analytical and numerical results is better
for d=100, a fact which we explain by the circumstance that the role of cluster
size fluctuations in the initial stages of the cluster growth is a decreasing function
of d.

The moderate sizes of clusters (3000 particles in the largest cluster) do not
allow us to obtain reliable results for pp =1/2—¢ (|J¢] < 1), i.e., when cosmax — 0
(‘Pmax —x/ 2)

The extention of the above “electrostatic analogy” to higher dimensions is
planned for a separate publication. If our conjecture is true, we can expect that
the value of the angle ¢pnax will not depend on d, because the corresponding
electrostatic potential has power-law (and not logarithmic, as in the 2D case)
behavior.
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