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The friction dynamics of contacting D-dimensional disordered elastic manifolds,
driven by external forces, is studied, and the existence of a szero-temperature
depinning transition below some critical dimensionality is demonstrated for different
kinds of elastic response. It is shown, that this model falls into the universality
class of single interface depinning in a 2D-dimensional random medium.

PACS: 46.30.Pa, 68.35.Ja, 81.40.Pq

The phenomenon of dry friction between two solid bodies is described phe-
nomenologically by well-known Coulomb-Amonton laws [1]. Despite of their
simplicity and a fairly long age, there is still neither a comprehensive proof of
these laws, starting from a reasonable microscopic model, nor complete under-
standing of the dynamical processes, accompanying dry friction, and of the role of
elasticity in these processes. Recently this problem attracted a lot of experimental
[2], and theoretical [3, 4] interest due to the progress, achieved in last years in
the theory of driven depinning of elastic manifolds, such as domain walls [5] or
Abrikosov vortices [6] etc, in disordered media (a nice review of many related
topics can be found in Ref.[7]). Since dry friction looks like a typical depinning
phenomenon, it would be tempting to study some simple microscopic models in
spirit of this theory.

In the present article we consider the dynamics of dry friction between two geo-
metrically smooth D-dimensional elastic objects, for example, disordered membranes
or adjacent surfaces of solid bodies, which are confined to displace omly along
themselves. The most natural way to take into account both the randomness of
these objects and the interaction between them is to introduce the scalar functions
("quenched charges”) pi(ri) and pz(r;), which are assumed to be independent
Gaussian random variables with zero mean and (pi(ri)p;(r2)) = 6;;Ki(r: — r3),
K;(r) being short-range functions, vanishing at R > 0. Lateral displacements of
the manifolds are described by the functions Ri(rs,t) =r; + vit + ui(r;,t) (i=1,2),
giving the position of r;-th element in the fixed reference frame. Functions u(r,t)
take into account the clastic deformations, which are assumed to be small.

We consider the driven dynamics of the system at T =0 to be purely dissipative:

1dR; §H

Tt +F — R (1)
where T' is the mobility coefficient. Without any loss of generality we restrict
ourselves by the case of two identical isotropic sliders, driven by the oppositely
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directed external forces. The hamiltonian looks like this
H= Hclash’c[ul] + H ctastic [u2] + Hint[Rl’ RZ]-

Energy of the elastic deformations can be written as follows: k

Hutastic = / dPrdPr' Dapys(r — r')V atip () V.yus(r') =

= 3 | G nans + 71 (6os — mana P uaual-K), ()

where n=k/|k| and (1) are the longitudinal and transverse elastic moduli. If the
sliders are some membrane-like objects (as in the real experiments [2], where latex
membranes were used), then the kernel D(R) is local, and the elastic hamiltonian
has a standart form with n =2, We can also consider a more general form
of the elastic hamiltonian, allowing for the possibility of bulk-mediated response.
This is a quite reasonable assumption in the solid dry friction problem, in which
the sliders are indeed the contacting surfaces of two solid bodies. In this case
the kernel in (2) becomes non-local in real space [8] and non-analitical in the
momentum representation: D(k) ~ |k|~! and n=1.

The most general form of local interaction between the sliders is given by the
expression:

Hin: =/dD‘f'1dD7‘2 U(pi(r1), p2(r2))6(Ry(r1,t) — Ra(re, 1)),

where the function U depends on the microscopic details of interaction. We assume,
that there act some local adhesive forces between the contacting manifolds, and
the potential energy of these forces is simply proportional to the product of two
”charge densities”:

U = Vop1(r1)p2(r2). (3)
Such model assumption is well justified for the case of geometrically smooth sliders,
for example, in the presense of a surface chemical disorder. Ome could also regard
(3) as a simple way to mimic the interaction between the geometrically rough
surfaces [1]. Other possible implications can be related with the friction dynamics
of polycrystalline or amorphous materials, or flat tethered surfaces with quenched
topological defects [9], or membranes which adhere to each other via randomly
distributed stickers [10] etc. Note also that if to neglect the substrate elasticity
and substitute pz(r) = ppcos2kpz, then our equations of motion coinside with
those describing the dynamics of sliding CDW in a random potential [11]. Among
some other possibilities one should mention the mechanical model of Ref.[3], which
seems rather close to a discretized version of our system if to replace the random
springs there by randomly charged beads; and also the random heights model [4],
which explicitly takes into account the influence of the normal load.

Let us first demostrate the existence of a zero-temperature depinning transition
in our model. For both slhiders we take into account the elastic displacements in
all lateral directions and obtain from (2) the following equation of motion:

_1_ aul,a(rr t) 6H c1a4tic 1

T ot Sura(r,t) 1o T TV~

—Vgpl(r)/dbr'pg(r')aaé(r +vit + uy(r,t) — ¢’ — vat — uy(r',t)), (4)
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and a similar equation for uj;. Expanding the generalized forces in the r.h.s. of
Eqs.(4) in powers of displacements, we obtain the system of non-linear differential
equations, describing the interaction of elastic degrees of freedom of the manifolds,
with the vertices being quenched random variables. In order to evaluate corrections
to the average velocities, we solve these equations self-consistently by iterations.
Similar procedure has been used repeatedly in different problems — see, for example,
Refs.[12, 13].
After first iteration and averaging over the random variables p; we obtain:

dpdD

§(I vy o) = 2V3Tvg @D )P PaPsPyPsK1(q — P)Ka(p) x

X a+94s + q°0y5 — 9495
q’('yﬁI‘zq"‘ F (pv)?) q’('y_’LI‘zq”‘ + V)’

where v = vy, — vy is the relative velocity, and upper cut-off of the integrals at
p,¢ ~ o~ is understood. The correction to v, has exactly the same form, but
with the opposite sign. Since the most divergent contribution comes from the
region of small momenta, one can replace the product of the correlation functions
by its value at p=q=0, and then perform integration over q explicitly:

6(11—1”“) ~ VOZKleI\(n—D)_/n,Y-D/n /de papplpv'(D—Zn)/n,up ~

~ T lyg (00) ™™ (V2K Ky~ PIng=(+0D/) | (5)

where e=2n—D, v D/"='y +(D l)'yJ_D/", and K; = K;(p=0) = [dPr Ki(r).

Therefore, the corrections to the average velocity (or, in other words, to the inverse

mobility coefficient) diverge at small velocities below the critical dimensionality
= 2n, depending on a kitd of the elastic response of the manifolds.

Although the analysis, given above, is applicable quantitatively only in the
limit of high velocities, we believe, that the vanishing of mobility coefficient results
in some non-zero threshold value of the external force F., below which steady
relative motion of the sliders becomes impossible. Such picture resembles the
one, which is encountered in consideration of the transverse motion of an elastic
D-dimensional interface through a quenched random medium (see, e.g., Ref.[14]).
The threshold F. can be estimated in assumption that the manifolds get stuck to
each other when the corrections to v ~ I'F become equal to or larger than the
average velocity itself [13). Then it follows from (5), that

1/
F, ~ ((%K1K2)2“7_D0_(“+1)D) € .

By analogy with the interface depinning problem one can expect, that just above
F. the average velocity obeys a scaling law: v ~ (F — F)?, however, to calculate
® one has to use a more elaborate technique. In the rest of the article we
shall establish explicit equivalence between the driven dynamics of our system and
the (extensively studied) critical behaviour of a certain class of moving -elastic

interfaces. Note, that such equivalence holds for the equilibrium static properties
as well [15].
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For the sake of simplicity we neglect the elasticity of substrate (i.e. uz=v,=0
in (4)) and write down the overdamped equations of motion for u=u;:

1 Oe | BBterie - . — Vops(e)arale +vi-+u(r, 1) (©)
where f =F —I'"!v. Next, we introduce an auxiliary vector field i and construct
the Martin—Siggia— Rose generating functional [16]:

Z[n, 7] = /DU'Dﬁexp{i/dDrdt [aa (%%‘T‘! n 51?;:m)+

+(Vola(r, )2 (r)Bapr(x + VE -+ 0(r, 1)) + Tatia + (e — fu)iia)] }-

Since Z[0,0] = 1, we are able to average the generating functional over the random
variables without any complications. Due to the specific form (3) of the interaction
energy, integration over p; and p; can be performed explicitly, resulting in

Z[n, ) = /DuDﬁ exp [iIo + iline +i/dDrdt (Mata + (fia — fu)ﬁa)],

Iy being quadratic in u and @, and I containing the interaction terms of
different orders, for example:

2
I =i5—‘2ﬁ / dPrdtrdtaia(r, t1)ig(r, t2) x

X850 K (v(t1 — t2) + u(r,t1) — u(r,t2)) (7N

(here we put K,(r)=K;6(r) and K,(r)=K(r)).

In order to assess relevance of different terms in the effective action, we assume,
that the two-point correlation function of the lateral displacements obeys a scaling
law near the depinning transition:

_ 2y o p1 — 1% Jl_‘iL)

((alrs, 1) = uen 1)) ~ Ira = maltq (2520

where g(z) — const at z — 0 and g(z) ~ 2%/ at z — oo, ¢{(D,n) and z(D,n)
being the roughness and dynamic exponents respectively. A change of scale
r — Ar, t — A*t, u — Au in assumption, that the action I is dimensionless, yields
[@fl=n-D-(~-2z, [T}J=n—-2z and [F]=¢-n.

Comparing two terms in the argument of K in (7), we see that there exists
the time scale At ~ v=*/(*=0), beyond which one can neglect non-linearity of
Eq.(6) and regard the quenched random forces as an effective thermal noise. Since
v ~ (F —F.)®, there also exists a corresponding space scale — the correlation lenght
§ ~ (F—F)™ with v=0/(z—(), therefore, [F]=[L~%/*]. As a consequence, all
the exponents of interest can be expressed in terms of ( and 2z [14]:

1 4= z—( .
n—( n—(

At L > ¢ we neglect all interactions between u and @, and the trivial ”thermal-
noise” exponents { =0, z=n [17] are recovered near D.. However, at smaller
scales we can instead neglect the v(¢; —tz)-terms:

v=

K V¢
IR =i—52 / dPradtydtsiia(r, tr)ip(r, t2)0a0s K (u(r, t1) — u(r,3)).  (8)
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Therefore, in the critical region the interactions become important, and one can
expect that ( ~ O(e), z ~ n+ O(e). U to substitute in the r.h.s. of (8) the

expansion
o0

KZm
K(r)= = pim
’g) (2m)!
then straightforward power counting yields, that the dimensionalities of all coeffi-
cients K,,, are positive near D, i.e. we have to renormalize the whole function
K(r) (18]. The mobility coefficient I' and the force F are also subject to
renormalization.

The crucial point is that the expression (8) looks exactly the same as the
effective interaction of elastic degrees of freedom of a D-dimensional interface,
driven through a 2D-dimensional disordered medium [19, 20], the transverse
coordinate (height) of interface being substituted by the lateral deformations u.
This observation allows us to apply all results of the interface depinning theory
directly to our system. But before one should justify the possibility of neglecting
the higher-order interaction terms. In the critical region, using the condition { < 1,
we obtain, that the only term with coinciding space arguments gives a contribution
in the long-wavelenght limit:

Il(:t) ~ /dDTdtldtzdtsdtgﬁa(l‘, tx)‘&p(r, tz)ﬁ., (1‘, ta)ﬁa(l‘, t4) X
X0,0; K (u(r,t1) —u(r,t4))089, K (u(r, t2) — u(r, t3)). 9

One can easily convince oneself that such interaction is irrelevant. Indeed, if to
count powers in the r.h.s. of (9), then for a short-range correlator we obtain the
condition 3D — 4n + 2(D + 4)¢ > 0, which is fulfilled near D..

Unfortunately, our understanding of the behaviour of interfaces near the de-
pinning transition is far from being complete. In particular, different analytical
approaches diverge in predictions about the values of ( and 2. Nattermann et
al. [14] observed, that the functional renormalization group equations for K(r)
(at n=2) have exactly the same form as in the static case (18], and concluded
that the corresponding roughness exponents should also coincide. Substituting the
fixed-point solution for K(r) into the flow equations for I', they evaluated the
dynamic exponent z, and obtained: z=2-—5/18¢, 6 =1— 5/36¢.

On another hand, Narayan and Fisher [20], using expansion around the mean-
field solution of the equations of motion, came to essentially the same functional
flow equations, but with somewhat different interpretation. In the simplest case of
n=2 and codimension d=1 (in terms of our original system it means, that the
only deformations along v are taken into account) they found ¢ =¢/3, z=2—2¢/9
and =1—¢/9. _

All these results, however, should be taken with caution, since it is not
clear how they could be affected by allowing for the displacements in all lateral
directions. Besides that, from the analysis of static behaviour of the system under
consideration we know [15], that the functional flow equations change their form
if yy#vL in (2). These problems obviously need a careful analytical treatment.

In summary, it is shown, that the driven dynamics of two D-dimensional
elastic manifolds with random interaction near the depinning transition belongs to
the universality class of transverse motion of a single manifold through a 2D-
dimensional disordered medium. This conclusion is in agreement with the numerical
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result of Cule and Hwa [3], who studied the dynamics of a one-dimensional random
mechanical chain on a rough substrate and found, that it falls into the universality
class of driven directed polymers in a two-dimensional random environment.
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