Pis'ma v ZhETF, vol.64, iss.8, pp.564 - 569 © 1996 October 25

LANDAU-BRAZOVSKII THEORY FOR THE Ia3d STRUCTURE
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The stability of the so-called "Gyroid” phase, of Ia3d symmetry, observed for
lyotropic liquid crystals and block copolymers is accounted for using the Landau-
Brazovskii theory of weak crystallization. In the mean field approximation, the Ia3d
phase is stable between the lamellar and hexagonal phases close to the disordered
liquid phase. When allowance is made for Brazovskii critical fluctuations, a direct
phase transition between the disordered liquid and Ia3d phases is shown to be
possible, in agreement with experimental observations.

PACS: 61.25.Hq, 64.60.Cn, 64.70.Md

Bicontinuous cubic phases are remarkable structures formed by certain am-
phiphiles [1,2], lipids [1,2] and block copolymers [3—5] They are typically observed
in a narrow phase diagram window between regions of stability of the lamellar
(lam.) and hexagonal-packed cylinder (hex.) phases, close to the disordered liquid
(isotropic) phase. The most commonly observed structure belongs to the Ia3d
space group, and the local morphology of this phase has been shown to be similar
to the gyroid minimal surface [6)].

The stability of an Ia3d phase with respect to the lam. and hex. phases was
first shown theoretically by Matsen and Schick, using numerical mean field theory
calculations for diblock copolymers [7]. This structure was found to be stable
between these phases, starting at a triple point just below the order-disorder
transition. This approach does not allow for composition fluctuations, and a
direct transition from the disordered liquid phase to the Ja3d phase observed
experimentally [3,5] is not predicted.

In this letter, we investigate the stability of the Ia3d phase using the Landau-
Brazovskii (LB) theory of weak crystallization [8,9]. The approach is general
for systems that undergo a weak phase tranmsition driven by a short-wavelength
instability between the disordered liquid and ordered crystalline phases. Thus it
can be applied to thermotropic and lyotropic liquid crystals, as well as block
copolymers [10,11]. The principal advantage of the LB theory compared to other
theoretical methods is that it allows for thermal fluctuations of the short-wavelength
component of the density function.

In the vicinity of a weak phase transition between the disordered liquid and
an ordered crystalline phase, the density function of the system can be written as

o(r) = oo+ bo(r) , (1)
where go is the uniform component insensitive to the phase transition, and 6p(r)
is the short-wavelength component characterizing crystalline order. The LB free
energy functional describing this phase transition can be written in units of kgT

as [12]

Hléo] = /dV[%69’+~g%—[(V’+qo)6e] 360+ ;\,69 ]- (2)
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Here 7 is the reduced temperature, go is the critical wavenumber, {; is the bare
correlation length and «, A are phenomenological constants (A > 0). For the system
to be close to the short-wavelength instability it is assumed that
ITl < &3¢5- 3)
The ordering transition (crystallization) occurs upon condensation of several
Fourier components (harmonics) of the density function close to the sphere |q|=¢o
in reciprocal space. The condensate wavevectors are considered as the reciprocal
lattice vectors for the ordered structure. In the LB theory the condensate
wavevectors lying on the sphere are chosen as the shortest reciprocal lattice
vectors. Then the number and position of all condensate wavevectors may be
determined using the expressions for allowed Bragg reflections [13]. Thus in the
LB theory the set of the shortest reciprocal lattice vectors corresponds to the
main harmonic of the denmsity function, whereas the other reciprocal lattice vectors
(lying off the sphere) correspond to the higher order harmenics.
In general, the short-wavelength component of the density function can be

written as
69(1‘) = 6gcr (r) + 77(1‘) ) (4)

where 6p.-(r) is the “crystalline” component possessing the symmetry of the crystal
lattice, and n(r) is the fluctuating component, with a thermodynamic average equal
to zero. In turn, the “crystalline” component is [14]

§0cr(r) = ) ennlr) , )

where n is an index labelling harmonics, g, are the amplitudes playing the role
of order parameters, and
Nn
pn(r) = (2Na) /2N [ Grrtrand 4 ) (6)
=1
are orthonormal basis functions. The G,; are the wavevectors of the reciprocal
lattice forming the star of wavevectors of the nth harmonic (|Gni| = Ga), 2N, is
the number of arms in the star and the a,; are fixed phases. In centrosymmetric
structures, the phases «,; are equal to 0 or . The relative values of a,; are fixed
by the symmetry of the crystal lattice and can be determined using expressions
for the geometrical structure factor tabulated in [13]. Unnormalized basis functions
can be found in the same reference [7).
The basis functions can naturally be ordered using the parameter
2 2
w=(2-1) ™
90
starting from ¢; = 0, that corresponds to the main harmonic. The parameter
€n, naturally appears in the LB theory and characterizes the relative distance of
wavevectors of the nth harmonic from the sphere |q| =go. Note that, in view of
inequality (3), the sum in (5) is restricted to the set of harmonics with e, < 1.
Within the classical LB theory, lam., hex. (two dimensional P6m), and b.c.c.
(Im3m) structures compete for stability [15]. For these structures efo™ = 9,
€2 =4, and €™ =1. Thus the analysis of the stability of the lam., hex.,
and Fm3m structures is performed in the one harmonic approximation. The basis
functions corresponding to the main harmonic of these structures are [13,15]

01" (2,9,2) = V2 cosgoz (82)
. .
(pl"”(z, $hz) = \/‘—3- [cos goz + 2cos quz cos \/32(10!’] ! (8b)
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w{"‘s"‘(z, y,z) = \/> [cos cos U + cos oy cos + cos cos qoz] (8¢c)

Vi V2 V2 ﬂ

In the mean field approximation the free energies for lam., hex. and Im3m
phases are then given by the equations [12,16)

A3

FEF = zol+ 50 (9a)
hcz - y [2 A5 4
FifF = 5l - &V:1+42&’ (%)
Im3m T 2 7 4 A 15
Fit 7"1‘5\/;”4'4 i (3)

The mean field phase diagram for competing lam., hex. and Im3m structures
is well known [12]. Except for 4y =0, the Im3m phase appears first upon crystal-
lisation due to the relatively large cubic coefficient [15]. At lower temperatures,
the hex. phase is stable, as the structure with intermediate values of the cubic
and quartic coefficients. At the lowest temperatures the lam. phase is most stable
because: it has the smallest quartic coefficient.

A traditional analysis within the LB theory does not take into account the
fact that the wavevectors of the second harmonic [220] for the Ia3d structure are
uniquely close to the sphere |q| = go, occupied by the wavevectors of the main
harmonic [211]. Indeed, for the Ia3d structure €]*3¢=1/9, and this is at least
an order of magnitude smaller than for other competing structures (it should also
be noted that €23¢ =16/9). Thus unlike the lam., hex. and Im3m phases, the
stability of the Ia3d phase should be analysed in the two harmonic approximation.
The basis functions corresponding to the first two harmonics of the Ia3d structure

are (cf.{17])

2
o14%(z,y, 7) = \/7 [cos 22 . oy . 2oz + cos 10Y gin 2% o 2002

IV A3 VAV S 3
doz ¢Ioz 240!/
+ cos —= sin — — 10a
Y/ S S ] (10a)
2 2 2
9%z, y,2) = \/7[cos cos 2qoy + cos 23/0511 % + co %cos 0% .
(10b)
The mean field free energy for the Ia3d phase is given by the equation
Ia3d o T 2 Y l 3 A 17 l 3de2. 2 ‘y 2 A 15 4
Fu? 291-576'9 +ar 891 2( +_‘z“ €590)e; — A3 2+4, 02
+ 180200+ 23020} a

A comparative analysis of the free energy of the different phases shows that
allowance for the second harmonmic [220] of the Ia3d phase in addition to the
principal one [211], results in stabilisation of the latter in a narrow window of the
phase diagram between the stability regions of the lam. and hex. phases, starting
at a triple point just below the ordering transition (fig.1). The triple point is
located at || ~ ef*%4¢3q3, where the second harmonic {220] of the Ia3d phase
becomes important for the first time. This result is in qualitative agreement with
[7), where numerical mean field calculations for diblock copolymers were performed.
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1 Fig.l. Mean field phase diagram
] for isotropic, lam., hex., Im3m
] and Ia3d phases, for the case
7 & qo2/4A = 1. Transitions were
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In the presence of thermal fluctuations the total free energy of the system is
given by

F = Fyp — m/e-f*[ﬂl Dn . (12)
Here
A
il = [av [ G0+ SO adin] - Fnt 4 ot + o (0 + )l
A
— apbeen® — 2bekn+ 3!-6%773 + 569311 +56ean?]  (19)

is an exact free energy functional for fluctuations.

As shown by Brazovskii [9], when the inequality (3) is fulfilled, the effect
of thermal fluctuations may be considered in a lower non-trivial (Hartree) order
of self-consistent perturbation theory (SCPT). Recall that in SCPT, the exact
functional H is replaced by some effective Gaussian functional H 51)!, and the
difference H — H 5?} is considered as a small perturbation. The series of terms
in SCPT appear in the same form as in thermodynamic perturbation theory [14].

The only difference is that the parameters of the functional A (g} are determined

self-consistently from the condition of the minimum of the appropriate approximate
free energy.

In the Hartree order of SCPT, the ”bare” a.ppronma.te free energy has the
form (cf.[14]):

) ~ -
Fappr = FMF — ln/e Hert Dy + (A - Hﬁ?})o , (14)

where (...)0 denotes the thermodynamic average calculated using the effective

functional A, e((;)f In turn, the effective Gaussian functional is

B = 5 [av [ror+ (o +adinl’] (15)

where the gap r is determined from the condition that the first variational
derivative of the approximate free energy (14) with respect to r vanishes.
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It can be shown that for lam., hex. and Im3m phases [9)]

A A
r=T+4 —2—<172)0 + 7912 ) (16a)
whereas for the Ia3d phase
A A
r=r+5(n")+ el +e3) - (16b)
Here, the self-consistent value of the mean-square fluctuation (772)0 is

(7)o = 5‘} . (17)

a3
where o = 9].
dntq [9)
The Hartree free energy (the optimal value of the approximate free energy
(14)) is then given by

—F© A
Frartree = Fur —ln/e H'”'Dn— ?("2>: : . (18)

The first term in (18) is the condensate free energy, the second is the free energy
of an effective Gaussian field, and the last is the so-called "correlation” free energy.

Using eq.(17) and performing Gaussian functional integration in (18), the final
expression for the Hartree free energy takes the following simple form:

2
FHcv'tree’FMF+2a\/—— %-c':.— . (19)
Note that this expression gives the absolute value of the Hartree free energy in
the LB theory, whereas the well-known equation of Brazovskii (eq.(13b) in ref.[9])
gives the difference between the Hartree free energies of the disordered liquid and
crystalline phases.

The principal requirement for validity of the LB theory when allowance for
critical fluctuations is made is that the value of |r| at Brasovskii transition
(transition from the disordered liquid to the lamellar phase), |rg,| ~ (a))?/® [9],
satisfies the inequality (3), or

(a /\)2/3
&lad
We assume here that the value of r at the Brazovskii transition (rp,) is of the
order of |7B,|, so the inequality (20) guarantees satisfaction of the Braszovskii
criterion rg, > aX(fogo)™! [9]. This ensures the smallness of higher order
corrections to the Hartree free energy up to the phase transition line. Attempts
to confirm via numerical calculations that at the Brasovskii transition rp, < |75/,|
are unfounded, because in Bragovskii theory there exists no small parameter, apart
from |7rp,|, that controls the relative value of rp,. It therefore appears that the
estimate of the lower bound of validity of the Brazovskii theory for the case of
block copolymers (N > 10!°, where N is the degree of polymerization) used by
Fredrickson and Helfand [10] is incorrect.

The allowance for: critical Bragovskii fluctuations results, as usual, in an expan-
sion of the stability region of the disordered liquid phase to lower temperatures
[9). In fig.2 we present phase diagrams calculated using eq.(19) in terms of
7= r(a))"?/3 and § = 4(a))~Y3x-Y3. For 0 < k < k* (x* =0.06) the order-
disorder transition line is closer to the stability region of the Ia3d phase than
in the mean. field approximation. As the value of x increases, the order-disorder
line approaches the triple point, this corresponds to the increasing importance of

[

HE

<. (20)
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fluctuations. Finally, at x > x* there is a direct transition between the disordered
liquid and the Ia3d phases. The threshold value x* ~ €]23¢ corresponds to the
situation when the Brazovskii tranmsition takes place at |7g,| ~ €]%34£2g2, where
the second harmonic of the Ia3d phase becomes important for the first time.
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Fig.2. Phase diagrams calculated nllowing for Brazovskii critical fluctuations, using eq.(19). Phase
diagrams are presented with » equal to (a) 0.015, (b) 0.15. The dashed line shows the lam.-hex.
virtual phase transition line

Thus we have shown that the second harmonic [220] in addition to the principal
one [211] is responsible for the stability of the Ja3d phase with respect to the lam.
and hex. phases just below the order-disorder transition line. In turn, fluctuations
are responsible for shifting the order-disorder line to lower temperatures, and as
a result, for direct phase transitions between the disordered liquid and the Ia3d
phases. These results are in qualitative agreement with experimental observations
on lyotropic liquid crystals, and especially, weakly segregated diblock copolymers.

We are grateful to the EPSRC (U.K.) for the award of a Visiting Fellowship
to VEP, and to the Isaac Newton Institute (Cambridge, U.K.) where this work
was completed. VEP was supported in part by grant RFFI 96-02-18235.

V.Luzzati, T.Gulik-Kreywicki, and A.Tardieu, Nature 218, 1031 (1968).

J.M.Seddon, Biochim.Biophys.Acta 1031, 1 (1990).

M.F.Shulz, F.S.Bates, K.Almdal, and K.Mortensen, Phys.Rev.Lett. 73, 86 (1994).

D.A Hajduk, P.E.Harper, S.M.Gruner et al., Macromolecules 37, 4063 (1994).

S.Forster, A.K.Khandpur, J.Zhao et al., Macromolecules 27, 6922 (1994).

A H.Shoen, NASA Technical Report No. D-5541 (1970).

M.W.Matsen and M.Shick, Phys.Rev.Lett. 73, 2660 (1994).

L.D.Landau, Phys.Zs.Sowjet. 11, 545 (1937).

S.A Brazovskii, Sov.PhysJETP 41, 85 (1975).

10. G.H.Fredrickson and E.Helfand, J.Chem.Phys. 87, 697 (1987).

11. L.Leibler, Macromolecules 18,1602 (1980).

12. EIKats, V.V.Lebedev, and A.R.Muratov, Phys.Rep. 228, 1 (1993).

13. International Tables for X-ray Crystallography, Vol.l, Eds. N.F.M.Henry and K.Lonsdale,
Kynoch, Birmingham, 1952.

14. L.D.Landau and E.M.Lifshitz, Statistical Physics, Addison-Wisley, London, 1958.

15. S.Alexander and J.McTague, Phys.Rev.Lett. 41, 702 (1978).

16. E.E.Gorodetskii and V.E.Podncks, JETP Lett. 41, 298 (1985). *

17. M.W.Matsen and F.S.Bates, Macromolecules 29, 1091 (1996). Note, that due to a typographical

error the besis function ¢(321) in this paper is written incorrectly.

Rl e B ol o e

569





