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Poisson brackets for the Hamiltonian dynamics of vortices are discussed for
3 regimes, in which the dissipation can be neglected and the vortex dynamics is
reversible: (i) The superclean regime when the spectral flow is suppressed. (ii)
The regime when the fermions are pinned by crystal lattice. This includes also the
regime of the extreme spectral flow of fermions in the vortex core: these fermions
are effectively pinned by the normal component. (iii) The case when the vortices
are strongly pinned by the normal component. All these limits are described by
the single parameter Cp, which physical meaning is discussed for superconductors
containing several bands of electrons and holes. The effect of the Fermi-surface
topology on the vortex dynamics is also discussed.

PACS: 03.40.Ge, 47.37.4q, 67.40.Vs, 74.60.Ge

1. Introduction. The problem of the vortex motion is well understood for
the translational invariant Fermi superfluids [I-4]. When the theory is applied to
superconductors, one should take into account the effect of the band structure of
the crystal on the vortex dynamics. In this case the topology of the Fermi-surface
is to be important and we make an attempt to consider this effect in the regimes,
when the dissipation is small and can be neglected.

2, Poisson Brackets Formalism for the Vortex Motion. We start with the
phenomenological hydrodynamic equations for the system of distributed vortices in
superfluids or superconductors. In the limit of vanishing dissipation the dynamics
of the collective variables becomes conservative and in principle can be described
by the effective action. However, as usually occurs in the hydrodynamic systems,
such action is not well defined and the Hamiltonian formalism in terms of the
Poisson brackets (PB) becomes preferrable. In this formalism the Hamiltonian is
the function of the relevant hydrodynamic variables characterized by the algebra
of the Poisson brackets.

We assume that the normal component is clamped, ie its velocity v, =0. This
is typical for superfiuid *He due to its high viscosity and for superconductors where
v, is fixed by the impurities in the crystal lattice. The remaining hydrodynamic
variables at low temperature are the mass density p and the superfluid velocity v,,
which is non-potential in the presence of the distributed vorticity. The Hamiltonian

| T X
= [&r [yoroiel+eo)] (2.1)

contains the internal energy density e(p) and the kinetic energy. In crystals, due
to absence of the Galilean invariance, the superfluid component does not coincide
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with the density p of the electrons even at T'=0: p,(T =0) #p. Actually p, can
be much smaller than p because most of the electrons are concentrated in the
completely filled bands. Nevertheless the hydrodynamic equations are valid for the
descrition of the long-wave-length dynamics of p and v,.

The motion equations are obtained as the Liouville equations

={H,v,} . 22
5 - UV} (2.2)
if one uses the PB between the variables. These PB are universal, ie. they do
not depend on the Hamiltonian [§], and we propose:

{p(r), va(r')} =Vé(r - v') (2.3)
{p(r), p(x')} =0, (2.4)

(o), 0 ()} = ey et

- C
The first two PB are conventional (see [§]), eg the Eq.(2.3) follows from the
fact that the particle number and the phase of the condensate are canonically
conjugated variables. The Eq.(2.5) contains a new variable Cj, which is to be the
dynamical invariant of the system, 8Cp/9t =0. With this constraint the Poisson
brackets satisfy the Jacobi identity {a{bc}}+ {b{ca}} + {c{ab}} =0. The Eq.(2.5)
with Co=0 was derived in superfluids in the T=0 limit [6]. In derivation it’ was
assumed that each element of the vortex moves with the local superfluid velocity
v,(r), which corresponds to the Helmholtz theorem for the perfect liquid. The
PB Eq.(2.5) with Cp =00 was written in [5]. This corresponds to the motion of
vortices with the local normal velocity v, (r}). This is actually a true hydrodynamic
regime, which requires the complete pinning of the vortex lines by the normal
component or by the heat bath of the crystal lattice [7].

The range 0 < Cp < oo corresponds to the intermediate regimes when the vortex
is unpinned, but some groups of particles (electrons) are pinned by the heat bath
during the vortex motion. In addition to the trivial localization of the electrons
by the crystal lattice and impurities, the quasiparticles are also pinned by the
anomalous process of the spectral flow in the core of the vortex, discussed in
(8, 9, 3, 4. When the vortex moves in the regime of the extreme spectral flow,
the momentum is effectively transferred from the vortex to the heat bath, which
corresponds to the pinning of fermions by the heat bath.

With the PB in Eqs.(2.3-5), the Liouville equations (2.2) of the nondissipative
dynamics become

s(r—1') . (2.5)

op = .
5{+V'(pavs)=0 ’ (26)

dv, 1 - - 6H
hALS 5 v V= == . .
3 +p—co(”’v’)x( XV, )+ Vu=0 , pu P (2.7)

Using the kinematic definition of local velocity vy of vortex lines{10, J3):

8V, +Vu=—vy x (Vxv,) , (2.8)
one obtains the following relation between vy and v,:

(p—Co)vep =psv, . (2.9)
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For superconductors the lhs of Eq.(2.9) determines the Hall conductivity in the
limit of vanishing dissipation:
ec
CHall ;n“B(P Co)
where B is magnetic field.

The equation (2.9) is not Galilean invariant. The Galilean invariance is restored
by introducing the velocity of the normal component v,, which coincides with the
velocity of crystal lattice in the case of superconductors. Then multiplying by the
circulation £ (with |£]= Nwh/m, and N being the winding number of the vortex)
one obtains the equation for the balance of Magnus, spectral flow and Iordanskii
forces acting on the vortex [3]:

KX [p(vs ~vL)+ Co(vy — Vo) + pa(va — v,)] =0 (2.10)

where p, =p— p, is the tensor of the normal density.

The density p and the superfluid density tensor g, are well determined quantity,
the latter being determined by the current-current correlation function. Let us
now discuss the parameter Cy. For the systems with translational invariance [3, 8]
the parameter Cy was determined only in the special hmit case, the so called
hydrodynamic regime. As we see below, in both hydrodynamic and collisionless
regimes the dissipation can be neglected and thus the Hamiltonian approach is
valid. As a result the Eqs.(2.9-10) are valid in both regimes, but with different
values of the parameter Cy. For example, as follows from Refs. [3, 8], in the
systems with the translational invariance the collisionless value of the parameter
Cy in Eqs.(2.9-10) is zero. But for superconductors with several electronic bands
the situation is more complicated and the parameter Cp can be nonzero even in
the collisionless regime. Moreover one can have the collisionless regime for one
band and the hydrodynamic regime for the other band.

3. Particles and holes contributions. The low-frequency dynamics and ther-
modynamics of the fermi-liquid or superconductors are determined by the low-
energy quasiparticles. In the same way the low-frequency dynamics of vortices
is determined by the low-energy excitations in the vortex core. The latter are
concentrated on the anomalous branch of the spectrum [11]. Here we follow the
simplified version of [1, 2] (see Refs.[8, 4]). Let us start with the axisymmetric
vortex in the translational invariant surrounding. The spectrum of the low-energy
excitations in the core is defined in the frame of the moving vortex, where
the Hamiltonian does not depend on time, if there are impurities. The ener-
gy of the low-energy branch is expressed in terms of the canonically conjugated
variables: the angular momentum @ and the angle a of the linear momentum,
k= (kpcosf, kpsinbcosa, kpsinfsina), in the transverse plane:

H=CwoQ+v, -k . (3.1)

The first term describes the orbital motion of fermions bound in the core around
the vortex axis [11]. The effect of the vortex on the motion of the quasiparticie is
similar to the magnetic field. The quantization of this orbital motion leads to the
descrete levels (see also Sec.4) with either integer or half-odd integer generalized
angular momentum @ {[12]. The frequency of rotation wg is the function of 8.
The direction of rotation is determined by the ”chirality” factor C = +1. For
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the conventional case of the particle-like excitations in the vortex with winding
number N =1 one has C=—1 [11], while C =1 for the hole-like excitations in the
vortex with the same winding number. This follows from the index theorem, which
relates the number of fermion zero modes in the vortex core to the vortex winding
number N [8]: in the case of holes the topological invariant, which determines
the number of zero modes, changes sign.

The second term is the energy due to the superflow in the vortex frame.

When the vortex moves with respect to the heat bath, its dynamics is
nonequilibrium. The kinetics of the fermions on the branch in Eq.(3.1) is governed
by the Boltzmann equation for the distribution function, n(Q,«), in the Q — «
phase space[4]:

on on  O((vs—vr)-k) dn n(Q,a) — neq(Q, @)

i AT TE ) T = 3.2
0t+cw03a O aQ T (3.2)

The last term describes the relaxation to the equilibrium distribution function n.q
determined by the heat bath outside the core:

neq(Q» 0‘) = f(’H —Vn: k) = f(Con + (Va - vﬂ) ) k) ) (3'3)
where f(E)=(1+exp(E/T))"! is the Fermi-function.

If v does not depend on Q one gets the equation for average momentum

8k + Cwoi x k + %k% sin® 02 x (vn — v )(F(A(T)) - F(=A(T))) = -% . (3.4)

k= —; /dQ;E:—(n(l,a) —neq(Q a))k . (3.5)

Here we take into account that [dQ8gn is limited by the bound states below
the gap A(T), since above the gap A(T) the spectrum of fermions is continuous
(2]. The effective interlevel distance for the unbound (delocalized) states is wyp =0
and they will be considered below.

In the steady state of the vortex motion one has 8,k =0 and the Eq.(3.4) is
easily solved. The rhs of Eq.(3.4) gives the momentum flow to the heat bath and
thus the following force due to bound states below A(T)

dk, . 1 A(T N ,
Fioc =/ 8 k% sin? 0-1—+—“ET—2— tanh 2(T){(VL —Vo)woT —CZ x (vp —vy)] . (3.6)

The spectral flow of unbound states above A(T) is not suppressed, since the
corresponding wo7 =0. This gives

k3 . A(T) .
Faeloc = —-Cs—fri/dCOSB sin® 9 (1 — tanh AT ) Zx(vp —vy) . (3.7)

Thus the total nondissipative spectral-flow force F,g4i,, is

2.2
waT A(T
tanh
1+ wir? A T

3
Frdise = —Clgi/dcose sin’ g [1 - )] Zx(vp—va) . (3.8)
K

The dissipative part of the spectral-flow force Fy;,, is

A(T) woT
2T 1+ wir?’

ks
Fyise = (vn ~vL)§I7'%/dcos(9 sin? @ tanh (3.9)



can be neglected when X =wor/(l +wir?) <« 1. So, the vortex motion is governed
by the conservative Hamiltonian dynamics either in the so called hydrodynamic
regime, when wor <« I, or in collisional regime, when wo7 > 1. In both cases the
contribution of the spectral flow to the parameter Cp in Eq.(2.10) from one spin
direction acquires universal values at low T:

C
_0. = s woT >> 1 , (310)
m
Co .
—=VP | wyrKl , particle states , (3.11)
m
C
_;ng =-V* | wrr< !l , hole states . (3.12)

Here VP =p/6n? is the volume of the Fermi-sphere of particle states (with one
spin direction), while V* =p}/6x% is the volume of the Fermi-sphere of the hole
states.

In conventional superconductors there are no zeroes of energy in the quasiparticle
spectrum and thus the Fermi surface is absent. Zeroes however appear due to
vortices. In the continuous description of the vortex core, the zeroes in the
classical energy spectrum E = ,/e?(k) + |A(k,r)|? are concentrated on the vortex
axis, but can be splitted into point nodes distributed in the vortex core [13]. The
function k(r), which shows the position of zero of E in the momentum space as
a function of the coordinate r in the real space, maps the cross section of the
vortex into the momentum space. Thus, if one sweeps the cross section of the
N-quantum vortex, one obtains the closed surface in the momentum space, swept
by zerces. The volume within this surface is just Co/m times N [9]. The physical
meaning of Cg/m is the number of the electronic states which remain kept by the
heat bath during the vortex motion. In the frame moving with the vortex this
corresponds to the number of the states flowing from the vortex to the heat bath
in the extreme spectral flow regime.

4. Electronic bands in crystals, open orbits. Let us consider the crystal
with anisotropic Fermi-surface. In the case of the particle states the Eq.(3.11)
remains to be valid for the arbitrary closed surface of zeroes with V7 being the
volume within the surface [9]. If one neglects the dependence of wor on «, 6 and
Q one can write an interpolating equation for the closed surface of particle states:

Co(particles) _ sz . (4.1)
m 1+ wir
The contribution of the holes to Cj is
Ca(holes) B N 1 g wir? 1
S =yB v =V Ve .
m 4+ wir? 14+ wir? + 14+ wir? (42)

where VP is the total volume of the Brillouin zone, V* = V58 — V? is the volume
of the hole states. The Eq.(4.2) follows from two arguments. (1) The spectral
flow parameter Cy changes sign for holes, as was discussed in the previous Section.
(2) The completely filled band should be considered as uneffected by the motion
of the vortex, the electrons on these bands are completely pinned by the crystal
lattice. This corresponds to the limit of the extremely fast relaxation and thus to
the extreme spectral flow.
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The Eq.(4.2) agrees with the microscopic calculations in Ref.[2]. If the gap A
is small compared to the Fermi energy, then p is very close to the volume of ali
the particle states: px~m) VP. If there is valy one band and this band contains
holes, then p = m(VB - V*). In the superclean regime, wor > 1, the Eq.(4.2}
gives p—Co ~ m(VE — V¥ ~mVE = —mV"  As a result ogay = —(ec/B)V" in
agreement with Ref.[2].

The Eqs.(4.1) and (4.2) should transform into each other during the filling of
the Brillouin zone, when the Fermi surface of particles transforms to the Fermi
surface of holes. However Eqs.(4.1) and (4.2) differ by the value VBuw2r?/(1+w3r?).
The key to the problem of matching these equations in the Lifshitz transition
is provided by open orbits, which appear as intermediate stage between particle
and hole Fermi-surfaces. The open Fermi-surfaces with complicated topology were
discussed in the relation to the Hall effect in the normal metal (see recent paper
[14] and references there). Here we show that in the presence of the open surfaces
of zeroes the parameter wor is small and Eqs.(4.1) and (4.2) match each other.

In the semiclassical approach the energy of fermions in the vortex core:

E*=(k) +1A(r)® . (4.3)

The lowest energy levels are concentrated in the vicinity of zeroes kg of the
spectrum ¢(k), ie close to the former Fermi-surface of the normal metal. Near the
Fermi-surface one has e(k) =v(ko)- (k — ko) = ~iv, 8,, where s is the coordinate
along v, =v(ko) ~ Z(2 - v(kg)). Close to the vortex axis one has

[A(r)[2 ~ it = 72(52 +5%) (4.4)

where & is the impact parameter. We assume for simplicity that the core radius
is large compared to the size of the electronic orbits: since the result is of the
topological origin, it should not depend on the model. First we quantize the
fast motion along s. According to supersymmetry the lowest energy level of this
motion lies exactly at zero energy [8]. As a result the spectrum of the excitations
in the core is determined by the slow motion along b, ie along the line of the
intersection of the Fermi-surface e(k) =0 with the plane k, =const. It is given by
E(ky,b) =+b, where k| is the coordinate along the line of zeroes in the momentum
space. The quantization of the slow motion, §dk)b(k)) = 27n, with b(ky) = E/~
gives the levels of bound states in the core

E,=—nuwg —1—— = l d—k“ . (4 5)
"owe vJ 2« C

For the closed spherical Fermi-surface this leads to the conventiomnal result for the
states in the vortex with large core radius:

¥

E, = —nw, wo = -
" ! kpsiné

(4.6)

For the open orbits the integral in Eq.(4.5) diverges which gives wo =0 as it was
expected.

5. Discussion. The Eqgs.(4.1) and ({4.2) can be generalized to the case of
several bands. If there are no open surfaces of zeroes, the total Cy/m contains
the positive contribution from the particles, the negative contribution from holes
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and the positive contribution kV?Z where k is the number of Brillouin zones which
are either completely filled or contain the hole states:

Cy 1 1
20 = VP_-—_«§:V"————-+A:VB . .1
m - 1+ wi,r? - b 1+w8b7'b2 (5.1)

This also includes the summation over the spin indices.

Each Fermi surface has its own wor. The conservative Hamiltonian approach
applies and the Eq.(5.1) holds, only if for each band the parameter A =wo7/(1+
wir?) < 1. If X are not small, the Eq.(5.1) can be considered only as interpolation
since the real woy and T are complicated functions of the impact parameter and
momentum p,. The limiting cases, when the Eq.(5.1) holds, can include the cases
when wor is small in one zone and large in the other. Thus Cy as a function of
external parameters (doping or direction of magnetic field) should have plateaus
interrupted by regions where one of the parameters A changes between 0 and 1.
The latter occurs also during the change of the topology of orbits.

The Eq.(2.9) can be also applied to other inhomegeneous systems which become
homogeneous on a large scale, such as Josephson junction arrays (JJA). In some
cases the corresponding quantities p, p, and C; can be obtained after averaging
over the scale of the inhomogeneity. In the system of the SNS contacts, the
parameter p — Cy is again small in the hydrodynamic limit due to approximate
particle-hole symmetry [15]. This leads to the almost ballistic motion of vortices
in the absence of the supercurrent, when j, =p,v, =0. It is still unclear whether
the approximate cancellation of p and Cp occurs in SIS contacts.
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