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We study the statistical mechanics of D-dimensional elastic manifolds, interacting
via randomly distributed forces. It is shown, that this model can be mapped onto
the statistical mechanics of disorder-induced roughening of a D-dimensional interface
with D transverse degrees of freedom in & disordered medium. The roughness
exponent ( for the lateral deformations is calculated for different kinds of elastic
response of the manifolds.
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The statistical mechanics and the driven dynamics of elastic manifolds in a
disordered environment have been a subject of intemsive theoretical investigations
in the last ten years. Competition between elasticity and randomness gives rise
to the existence of many metastable configurations of the system, which in turn
results in the non-trivial scaling laws. Such models have been successfully used
to explain the behaviour of a variety of physical systems, such as vortices in
superconductors [1], interfaces (domain walls) in ordered media (2, 3], etc.

Recently some attempts were undertaken to apply these ideas and methods
to a completely different kind of problems, namely, for description of the static
and dynamic processes, accompanying dry friction between two solid bodies, and
the role of elasticity in these processes. One can mention, for example, Refs.[4,
5], where different models for interacting disordered surfaces are studied, and
also Ref.[6], where the universality properties are discussed. Although much
efforts have been aimed towards explanation of the complex dynamic behaviour
near the depinning transition, it is also interesting to study the equilibrium
static properties of disordered surfaces in contact. The same question can be
asked, for example, when studying the behaviour of ”tethered surfaces” (i.e.
the multidimensional generalizations of polymer chains) with quenched topological
defects on polycrystalline or amorphous substrates {7].

The problem can be formulated as follows. Let us consider a flat D-dimensional
elastic manifold with disorder, lying on a random rigid substate. We allow only for
the deformations u(r) in all lateral directions, thus neglecting the ”vertical” degree
of freedom. The key question is how to take into account both the randomness
of contacting surfaces and the interaction between them. It seems quite reasonable
to incorparate both these features by assuming [6] that there are quenched scalar
functions pi(r;) and pa(r;) on the manifold and the substrate respectively, which
are independent Gaussian distributed random quantities with zero mean and the
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following correlation function:

(pi(r1)pj(rz)) = 6: K (r1 — r2), (1

where K(R) is a short-ranged function, vanishing at R > 0. Then the interaction
of the manifold with the substrate is ascribed to the local forces between these
”quenched charges” p;. The discretized mechanical version of such model is
represented by a D-dimensional array of randomly charged blocks, connected by
springs, on a rough substrate.

Position of r-th element of the manifold in the fixed reference frame is given
by R(r) =r+ u{r). Hamiltonian of the system has the following form:

H= Hclas + Hint1 (2)

where H.,, is the energy of elastic deformations. If the manifold is a membrane-
like object, then H.,, has a standart form, that is quadratic in gradients of
u. However, if to consider the contacting surfaces of two solid bodies, then
the bulk-mediated response dominates, i.e. the elastic interaction is non-local in
real space [8] and non-analytical in the momentum representation. Both kinds of
elasticity can therefore be described by the following hamiltonian:

1 [ dPk .
Hepgs = i/ (—27)3 (7||nanﬁ + 71 (641,3 - nanﬁ))lk) ua(k)Ug(—k), (3)

where n=1 or 2, v and v, are the longitudinal and the transverse elastic moduli
respectively, and n=k/|k|.
The second term in (2) looks as follows:

Hint = [ 47 U(ps(0) e + u(r)), (4)

where the potential energy U depends on the microscopic details of interaction.
In what follows we restrict ourselves by consideration of the specific form of U,
which seems to be the simplest reasonable assumption [6]:

U =Vopr1p2. (%)

This expression corresponds to the randomly distributed spots of attraction or
repulsion between the ”quenched charges”. Apart from being apparently the most
suitable for analytical treatment, such electrostatic-like potential energy seems to
provide a good model description for some real physical systems, for example,
in the case of "tethered surfaces”, where p;(r) can be thought as the density
of defects; or for geometrically smooth contacting surfaces of two solid bodies in
assumption, that there act some local adhesive forces between them, e.g., due to
the presence of a surface chemical disorder.

If there were no interaction, then u(r)=0. In the presence of interaction, the
system tends to minimize its energy (at 7'=0), and hence some non-zero lateral
deformations arise. We are interested in finding the “roughness exponent” {(D,n)
in the following expression:

((ua(r1) = up(r2))®) ~ baplrs — x2|%, (6)
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where o =1,..,D. Angular brackets here denote average over the random variables
p1 and pz. One should keep in mind that, although we borrow the terminology
from the interface depinning problem, there is no "roughness” in our problem, so
that ( serves merely as a measure of the lateral deformations.

The equation, determining the equilibrium shape of the manifold, is

é—?il-a—’ = Fy(r,u) = p1(r)8ap2(r + u(r)). (7
Uy

In order to calculate (, one might proceed in the following manner: to expand
the r.h.s. of Eq.(7) in powers of u, and then solve these equations perturbatively,
step-by-step. In first approximation we have F,(r,u) = pi(r)dsp2(r) — the random
force regime (or the Larkin regime [9]). From (1) we then obtain:

VEKE 1
(u(k)u(-0) ~ =L 5% o,

where Ko= [dPR K(R), and o is the ultraviolet cutoff. Therefore,

2n—- D
Crf = b) . (8)

This means, that at D < D.(n) =2n the correlator of the lateral deformations
diverges at large distances even in the absence of thermal fluctuations (disorder-
induced roughening).

The random force expression (8) is valid provided the distance L = |r; — ry]
does not exceed the Larkin lenght L. [9], since at larger scales the perturbation
theory fails due to the presence of many metastable minima of the energy (2).
The following question arises: how to go beyond the random-force regime and
calculate { at large distances?

In order to find the long-wavelenght behaviour of the system, we shall first
demonstrate how our system can be mapped onto the statistical mechanics of
a D-dimensional non-random interface with D transverse degrees of freedom,
embedded in a 2D-dimensional disordered medium, and then derive the functional
renormalization group (FRG) equations for K(R). For this purpose we evaluate
the free energy, averaged over the quenched disorders p; and p;, making use of
the standart replica trick [10]:

F=(In 2) = km ~((2") — 1),

n—0n

where

e[ Tioniron (45w
= / H’Duaexp [—% ZHexM[ua] - %Spln(é(R1 ~R,) -

%

;fg gb:/dDr 6(R1 —r — ug(r))§(Ry —r — ub(r)))]
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(here we substituted (1) with K(R)= Ko6(R), and denoted Sp= [ d”R). Logarithm
in the r.h.s. of this expression can be expanded in powers of the interaction
constant, resulting in

_ / HDua exp[- Z Hotas[ua] +
V;TIZO Z/dDr 6(ug(r) — uy(r)) + ] ()

where the ellipsis stands for the interaction terms of higher orders in V2, containing
four or more replica indices. For example:

. 1 (VEK?
B = 4 <—OT2—O> > /dD’"ldDrz 8(r1 — r2 + ua(rs) — us(rz)) x

a,b,c,d
x6(r1 - Tro + uc(rl) — ud(l‘g)).

But such terms are apparently irrelevant. Indeed, since ((D,n) < 1, in the
long-wavelenght limit the only contribution with r; =r; survives in r.h.s., ie.

AW ~ o (B KO) Y [ Pr baale) - we)s(ucle) - usle)),

a,b,c,d

int

where a is some microscopic lenght scale. Power counting here yields the condition
4n —~ 3D — 2(D + 4)¢ < 0, which is always fulfilled near D, =2n.

Expression (9) has exactly the same form (for n =2) as the free energy of
a D-dimensional elastic interface in a 2D-dimensional disordered medium [11].
The lateral deformations u(r) substitute in our case the transverse degrees of
freedom. Therefore our model of two interacting random manifolds falls into the
universality class of e single interface in a medium with short-range correlated
disorder.  Although such relation has been explicitly established here for the
specific (and most convenient for a quantitative analysis) form of U, we believe
that this general conclusion does not actually depend on the microscopic details
of interaction. Note also, that the same equivalence has been shown [6] to hold
for the driven dynamics or our model near the depinning transition.

The second term in brackets in the r.h.s. of Eq.(9) can be expanded in power
series:

d KZm 2m
K(u, —up) = Z (—2m—)!(ua —up)*™.
m=1

Since under the scaling transformation r — Ar the temperature scales as T —
A=ATT, where Ar=n— D —2(, and { =O(¢), where ¢ =D.— D, we see, that the
dimensionalities of all K,,, become positive at D < D.: Ay =D+ 207 +2m{ ~
€ > 0. This means, that one has to renormalize all coefficients K., or, in
other words, we have to deal with the functional renormalization group [12].
In derivation of the functional flow equations we closely follow the procedure of
Ref.[13]; one has omly to take into account the non-standart form (3) of the
elastic hamiltonian. The result looks as follows:

9K (R)

57— = (20— D= 40)K(R) + (RadaK(R) +
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+(1 +w1) <laaaﬁK(R)aaaﬁK(R) - 808,3K(R)8a0gK(0)) +

2
) (%82K(R)82K(R) - BZK(R)BZK(O)) , (10)
where
_22A+D+2) oo = A2 PN Sl
“I“TDpm+2 DD+ o

and e¥ is the current ratio of upper cutoffs. The important differences from the
well-known FRG equations of the interface depinning problem [11, 13] arise in the
first term in r.h.s., which stems from simple rescaling of the correlation function,
and in the second-order terms, which recover the standart form, if v, =1.

The value of { can be estimated, using the simple Flory-type arguments, which
amount to the requirement for both terms in brackets in Eq.(9) to scale in the
same way [14]. Then we find in the case of long-ranged correlator K(R) ~ R™7,

that 5 D

n p—
= ——— 11
CF 410 (11)

However, as we know from the interface problem, this expression is valid only if 3 is
small enough: (8 < 3., when the correlator remains asymptotically unchanged under
renormalization. At 8 > (. the simple arguments fail, since the renormalization
of disorder becomes important, and K(R) flows towards a new short-range fixed
point [11].

In our case, the functional flow equation (10) contains an explicit dependence
on the ratio of the elastic moduli, so that one might expect { to take a non-
universal value as well. However, this conjecture turns out to be wrong, Iif,
following the reasoning of Halpin—Healy [I1] (which is supported by the scaling
analysis in Ref.[15]), to assume that the roughness exponent is determined entirely
by the asymptotic behaviour of the fixed-point solution of the FRG equations.
One can easily obtain from Eq.(10), that at R — oo

-4-D4 2220 (R?

K(R)~R _<'_'exp( 2(2n—D)>’ (12)
so that the short-ranged fixed point solution is asymplotically universal in the
sence, that it does not depend on A, and, moreover, it is asymptoticaly ezact,
because of the higher order terms in the r.hss. of Eq.(10) would give only the
exponentially small corrections to (12). When applying the arguments of Ref.[11],
that the exponentially damped power-law function corresponds to the critical value
of 3, separating the long- and short-range fixed point regimes, we immediately
obtain that (.= D/2. After substitution in (11) we come to the final result:

_2(2n - D)
(D)= 22 (13)
For the physically most interesting cases we obtain from (13) the following values
of the roughness exponent: i) dry friction: a solid body on a disordered substrate:
¢(2,1) =0 (the logarithmic divergencies); i) two-dimensional elastic membrane on
a disordered substrate: ((2,2)=2/5; iii) one-dimensional dry friction: ((1,1)=2/9;
iv) two strings with random interaction: ((1,2) = 2/3 - this result is actually
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exact {16]. In all cases the roughness exponent due to the thermal fluctuations is
less than ( (zero-temperature fixed point).

It should be emphasized, that the conclusion about the roughness exponent to
be universal and be given by a simple expression (13), has been obtained following
a rather convincing and self-consistent approach of Refs.[11, 15], which establish the
relation between ( and the large distance behaviour of the renormalized disorder
correlator (for a different point of view see Refs.[12, 13, 17]).

In conclusion, we studied a statistical model of random interaction between two
elastic manifolds, which can be applied to various physical systems. This model
is shown to fall into the universality class of a single non-random D-dimensional
interface in a D + D-dimensional disordered medium. The roughness exponent for
the lateral deformations is calculated, making use of the functional renormalization
group technique.
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