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We study the solutions of the equations of motion in the gauged (2+1)-
dimensional nonlinear Schrodinger equation. The contribution of the Chern- Simons
gauge fields leads to a significant decrease of the critical power of self-focusing. We
also show that for appropriate boundary conditions in the model considered there
exists a regime of turbulent motion of a hydrodynamic type.
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1. The nonlinear Schrédinger equation (NSE) is one of the basic models
for nonlinear waves. The traditional field of application of the NSE has been
nonlinear optics [, 2], where it describes the propagation of wave beams in
nonlinear dispersive media. The NSE also arises in the treatment of various
nonlinear waves in hydrodynamics and plasma physics [3]. A most important area
of application in this case is the problem of the detailed description of collapsing
field distributions {4, 5]. With the opposite sign of the nonlinearity the NSE is
used as the basic model [6, 7] of the low-dimensional field theory for describing
vortices in the problem of Bose condensation.

Recent interest in problems involving the solution of the NSE in spatially 2D
systems has arisen in connection with the special properties exhibited by (24+1)D
systems when the NSE is furnished with a gauge field through the replacement
of the ordinary derivatives by covariant ones. In the infrared limit the main
contribution to the equation of motion of the gauge field in a (2+1)D system is
given by the Chern-Simons (CS) term within the system under consideration. For
a certain relation of the coupling constants the contribution of the gauge field to
the Hamiltonian compensates the contribution from the nonlinearity. It leads to a
soliton distribution of the field, which was found in Ref. [8]. The results of Ref.
[8] have stimulated a number of papers [9, 10, 11] in this field.

The purpose of this paper to study the equation of motion in the gauged
(24-1)D nonlinear Schrédinger (GNSE) model. The main focus of attention is an
investigation of the structure of the collapsing distribution of the fields. Specifically,
by means of numerical integration of the equation of motion we find the dependence
of the critical power and of the effective width of the zero-energy mode on the
coefficient % in front of the CS term.

2. We consider a system with Lagrangian density

k 1
L= 5% Aadp Ay +i¥" (9 +ido)¥ — 5 [(V — iA)¥[* + % et (1)

The equations of motion have the form

1
i6¢W=—i(V—iA)2\II+A0\II —g|¥)?y, (2)
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Here g is the coupling constant and j =Im¥*(V — iA)¥ is the current density.
The Hamiltonian for Eq. (1) is

#= g [ @7 - ia)ef - gur), %)

where the potential A4, is expressed in terms of |¥|? in the following way:

1
A(r,t)= z d*r'G(r — v')|¥|3(r', 1), (6)
1 2.0 AT
Ap(r,t) = % dr'G(r —x')j(r', t). (7
The Green function G(r)
) - 1 E,‘j Z!J'
G.(r) = o2 Q
satisfies the equation
V x G(r) = —=6%(r). 9)

Since in the Hamiltonian formulation the potentials are uniquely determined by
Eqs. (0), (7), the gauge freedom

Ay — Ay -0, (10)

T ey (11)

is fixed. This is achieved by using the Coulomb gauge V-A =0 with the boundary
conditions

lim r24;(r,t) = N, (12)

a&iT
T—00 27l'k Kt

lim Ao(r,t)=0. (13)

The choice of the boundary condition (12) derives from the necessity of satisfying
the Gauss’ law (3) of CS dynamics: ®=—1N. Here the magnetic flux is & and
the number of particles is N = [d?r|¥/|%.

The equation of motion and the continuity equation, expressed in terms of the
dimensionless fields p = p(z,y,t), u = u(z,y,t), v =v(z,y,t), w=w(z,y,t) and the
coordinates obtained by the following substitutions ¥ = |k|3/2pe?, Aq = —%w—atcp,
Ay =—ku+08;0, Ay=—kv+0p, t— E_]%It' m—’l—iT‘ y— TZT have the form

pzz + pyy = —2Cp° — pw + p(u® + %), (14)
Uy — v = —p?, (15)

Uy — wg = —2vp%, (16)

vy — wy = 2up?, (17)
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P = 2((up’)z + (v6)y) (18)

with the parameter C =glk| and the notation u; = du, etc.

Let us assume that in the Coulomb gauge V-A = —u; —v, + 8¢ =0 the phase
p satisfies the equation Ap=0. Then the solution of the equation u, +v, =0
may be expressed in terms of a function a{z,y,t) in the following way: u=aqa,,
v=—a;. In this case, Eqs. {15) and (18) have the form

N (19)

0% + up?, + v’ = 0. (20)

The set of Egs. (19) and (20) represents the “vorticity” form of the Navier-
Stokes equations (Euler equations) for two-dimensional flows of ideal incompressible
fluids, where the function a{z,y,t) has the meaning of a stream function. Note
that hydrodynamic analogies have been used previously for the solution of (1+1)D
NSE problem [12, 17]. However, the present paper gives the first rigorous proof
that the dynamics of the CS gauge field in the framework of the GNSE model
(in the particular case of the Coulomb gauge with Ap =0) is equivalent to the
two-dimensional equations of motion of ideal incompressible fluid.

Let us consider for example the case when the ansatz for the field ¥(z,y,t)
corresponds to the generalized lens transformation [10]

Y(r,t) = -‘I’-;(%)L) exp (—ib(T)C /2 +4AT) . (21)

t
Here (=r/g(7), 7= [du [f(w)]"% and b(r) = —f.f = —g.g. The gauge potential
0

transforms [8] upon such a substitution as follows:
Ar,t) = [g(7)] T A7), (22)

Ao(r,t) — [g()] " [Ao(& ) — B(T)CA (¢ 7)) (23)

while relations (6) and (7) are preserved, where the function p=|®|. After these
transformations Eq. (2) becomes

. 1
i0:® + (AC — V)& = ~5(V ~iA)*@ + A0@ - g|2[’®, (24)
because the function S(7) = (b2 +b,)/2 = —f3f,,/2 does not equal zero in the
case @(z,y,t) ~ b(z® + y?), b(t) ¥to —t. However if we are interested in collapsing
solutions with [14, 10] f2(t) ~ (to—t)/In In(to — t)], the structure of the self-similar
nonlinear core [10] of the solution is described by the solutions of the equation

p—

A0 = — (V- 1A)?® + 409 — ¢|B|%S. (25)

2

3. For the numerical analysis of the solutions of Eq. (25) we use the method
of the stabilizing multiplier [15]. The iteration approach for Eq. (25) has the
form

Pni1 =M, F 1 (G(p)F (-2C@) + j®n(u? + 07 — w)a)) , (26)
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M (fdzpc(p)Fw(—zc@z+j¢n(u2+v2—w)n)) |

Here F (F~!) are the operators of the direct (inverse) Fourier transform, G(p)=

(27)

- (p2 + )\)*1. The multiplier is j =1 or j=0, respectively, depending on whether
the nonlinear contribution of the gauge field in Eq. (26) is taken into account or
neglected. In the case j =0 the usual normalization in the NSE corresponds to
C =1/2. Without loss of generality we shall suppose below that A = 1. In the
simulation carried out in the present study we have used the value a=3/2, which
rapidly gives the value M, =1 for the stabilizing multiplier.

Fig.l. Plot of the function p({z,0) = p(0, {y)
and the surface p({z,(y).

Fig.2. Plot of the function u(¢z,0) and
the surface u(¢z,(y)

Flg3 Plot of w(Cz,O) = ‘UJ(O, (y) and
the surface w({z,(y)

Figures 1-3 show the configurations of the fields p, u and w for the specific
value of the parameter C =4. Using the function p obtained, we computed the de-
pendence of the critical power N and of the effective width (R?) = N~1 [ d2¢ ¢p*(Q)
on the parameter C. The results of calculations are given in Table.

Lilc [ N [ (R) |
0] 05 11703 | 1.2607

2.85 3.6483 1.2384
3 2.9216 1.2464
5 1.2825 1.2579

10 0.5973 1.2600
100 | 5.8528.10-% | 1.26066

| ek | |t | ]
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4, It is seen from Eqs. (14)-(18) that if we neglect the CS gauge fields (=0 in
Eq. (26)) the dependence of the particle number N on the parameter C = glk| has
the form N = No/C. This dependence is shown by the dotted line in Fig. 4. The
contribution of the CS gauge fields {j=1 in Table 1) leads to a sharp decrease
in the values of N. The effective width (R?) changes slightly. As expected, for
a fixed value of the parameter C in the region C > 3 the number N;_;(C) is
always greater than N;—o(C), because the CS gauge fields describe an effective
repulsion. '
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[ i}
\\
4 \\ Fig.4. Number of particles N as a function of the
AN perameter C without taking into account the gauge
2t \\\ (dotted line) and with the gauge field (solid line).
L | LT~ ; The point denotes the value N(0.5)=11.703

The present results correspond to the structure of the nonlinear core of the
solution obtained by the lens transformation for the special value 8 =0 of the
function B(7) when b(r) =1/{rg+7). In this case the generalized lens transformation
coincides with the conformal symmetry transformation [8] of the model. That is
the reason why the form of the equation of motion (14) of the full model after
the lens transformation coincides with Eq. (25). It will be very useful to compare
the results obtained by the lens transformation for a finite function F(r) in Eq.
(24) with the results of a simulation using the full equations of motion (14)-(18)
in the collapse regime.

Strong Langmuir turbulence in plasmas is usually described by the solutions
of the NSE (Eq. (21)). It is assumed that a cascade of randomly distributed
self-similar collapsing fields is generated. In this paper we show that the specific
features of spatially two-dimensional systems may lead to the traditional picture
of turbulence associated with the Euler equations. However, for the hydrodynamic
mechanism of turbulence (HMT) to be involved, it is necessary that a linear profile
of the phase p(z,y) exists in each mode. This implies that the nonlinear (in =z
and y)} contributions to the temporal evolution of the phase are small. One of
the media in which the HMT can play a role is an optical medium with random
inhomogeneous guiding surfaces. Reflecting from the surfaces, the wave fronts
acquire random directions of propagation. For media with weak Kerr nonlinearity,
the nonlinear phase disturbance from adjacent points will not be important.

If the phase of the field ¥(z,y,t) describes the longitudinal part in the gauge
potential completely, evolulion of field configurations is determined only by temporal
dependence of the gauge field. We show that in this case the equations for the
gauge field coincide with the equations of motion of an ideal fluid. The effects
of the manifestation of gauge field in classical systems with nontrivial topology,
including the swimining motion at low Reynolds number within the 2 4+ 1D
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hydrodynamics are well known {16]. A new feature is the fact that the basis for
the 2D turbulence in this case is chaotic dynamics of the CS gauge field.

The CS action with appropriate boundary conditions is a way to classify
conformal field theories [13]. The tools of the conformal field theory, in its turnm,
may be used [18] to study the 2D turbulence. We show that within the model
under consideration the connection between the dynamics of CS fields and 2D
turbulence problem may be stated beyond the application of the conformal field
theory. This dependence can be represented considering the evolution of closed
current lines. Stochastization near the contour link points within formulation of 2D
hydrodynamics of an ideal fluid in terms of contour variables [19] was discovered
in Ref. [20].

In conclusion, we have studied numerically the structure of the collapsing mode
in the GNSE model, observed a strong reduction of the critical power N in
spatially two-dimensional systems as compared to the conventional values, and
shown that in the case of general boundary conditions the phenomenon of collapse
inhibits the development of turbulence according to the hydrodynamic scenario.
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