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An analytical method is applied for description of calorimeter event selection
in small-angle electron—positron scattering at LEP1. The selections CALO! and
CALO2 are investigated specifically. The first-order correction to the Born cross
section is given in the case of wide-narrow angular acceptance.

PACS: 12.15.-y

The small-angle Bhabha scattering (SABS) process is used to measure the
luminosity of electron—positron colliders. Accurate theoretical determination of the
SABS cross section therefore has a direct bearing on the physical values measured
in LEP1 experiments [1]. In recent years considerable attention has been devoted
to Bhabha scattering process (see [2-5] and references therein).

There are two methods of theoretical investigation of the SABS cross section at
LEPl: an approach based on Monte Carlo calculations and an analytical approach.
The latter is used to check different Monte Carlo programs for ideal experimental
conditions. In this letter I give for the first time an analytical result for the two
calorimeter event selections (CES) labeled in [3] as CALOl and CALO2 in the
case of wide-narrow angular acceptance. Discussion is resticted to the first-order
correction. The second- and third-order leading corrections can be written with
the help of the electron structure function, but the second-order next-to-leading
correction requires considerable additional effort.

Before studying CES it is helpful to clarify the inclusive event selection (IES),
when only the final electron and positron energies are recorded by means of wide-

narrow circular detectors. The result will be widely applicable for the description
of CES.
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1. We introduce the dimensionless quantity

1
ra,anexp ) (1)

where Q3 =¢26? (¢ is the beam energy and 6, is the minimum angle of the wide

detector). The “experimetally” measurable cross section oeyp is defined as
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where X represents undetected final particles, and z, (z2) and qi (q3) are the
energy fraction and the transverse component of the momentum of the electron
(positron) in the final state. The functions ©f take into account the angular
cuts, while the function © takes into account the cutoff on the invariant mass of
detected electron and positron:
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For the wide—narrow case
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The first-order correction L;, which includes the contributions of virtual and
real soft and hard photon emission processes, is given by
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6 =6(c?2 —2) , By =1—65) =6(z —2%p3) ,

and L; can be obtained from IL; by the substitution pg — p3, p2 — 1. See Ref.
(4] for a definition of the variables used.

The term in the first (second) set of square brackets in Eq. (4) is the
contribution due to real and virtual photon emission by the positron (electron).
The terms containing z-dependent 8 functions under the integral sign correspond
to initial-state corrections, while the rest correspond to final-state corrections.

2. The CALOI cluster is a cone with angular radius 6 =0.01 around the final
electron (or positron) momentum direction. If a photon belongs to a cluster, then
the whole cluster energy is measured by the detector, and the electron can have
any energy. Therefore the limits of integration. of oey, over = are expanded to
the interval O to 1 in this case. If the photon escapes from the cluster, the event
looks the same as in IES. The above restrictions on the limits of integration over
z can be written symbolically as follows:

jdm + Z(iflrl <fo)dz = b/ld:: - Z(if|r| > 6p)dz | 6)

where r =k/w—qi/e1, and w(k) is the energy (transverse momentum) of the hard
photon. It is convenient to separate the contributions due to electron and positron
emission.
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The contributions in Eq. (7) labeled with a superscript ¢ depend on both the
shape and size of the cluster, while the rest are universal and are suitable for
any cluster.

For calculation of the initial-state corrections, labeled by a subscript i, we use
the left-hand side of relation (6), while for the final-state corrections, labeled with
a subscript f, we use the right-hand side of this relation.

The quantity I; coincides exactly with the case of IES (see Eq. (4) and the
comments following it), while I; looks like the contribution due to final-state
electron emission in IES except for expanded limits of integration over z.

It may be written in the following simple form:
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To find the additional (cluster-shape-dependent) contributions it is sufficient to
use the simplified form of the differential cross section for single photon emission

suitable for semicollinear kinematics. The additional contribution for the initial-state
electron emission reads
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The quantity @ specifies the limits of integration
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where the pairs in the square brackets and parentheses give the upper and
lower limits of integration over z and z;, respectively. For wide-narrow angular
acceptance

a=p2 , bo=ps, a=max(p,l+A(1-2z)), b=min(ps,p3—A(1-2)) .

The function ® under the integral sign in the right-hand side of Eq. (9) is
given by
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The additional contribution due to final-state electron emission may be may be
written as
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As to the contribution due to the positron emission, the quantity $; is equal
to the part in the first square brackets in Eq. (4) which is multiplied by the
z-dependent 6 functions. To obtain 35, it is sufficient to expand the limits of
integration over z to the interval 0 to 1 for the rest of this part of Eq. (4). The
result is
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The cluster-shape-dependent contribution due to initial positron emission coincides
with the right-hand side of Eq. (9) except for the limits of integration over z and
z; and can be derived by using ¥ instead of ¥:
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Finally, the quantity fl; may be written as
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For symmetrical angular acceptance one must suppose that p;=1, py=p3=p. In
this case, of course, TV =1, .

3. The CALO2 event selection differs from CALOI1 in the shape of the cluster
(see [3]). Only the cluster-dependent contributions to I; will change in this case.
The analytical formulas are very cumbersome, and we give the result only for the
symmetrical wide-wide case (X7 =X,):
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The corresponding formula for the contribution due to the final-electron emission
reads

. o [l4z? dz 2/ 1 1 _
Ef ﬂ/—l _z dt[/;/dll;(‘b'l_zz - 21_222)[‘I’1F1+‘I’2F2+\I’3F3]+
0

( )

(zp3 ")(Ji —z)

03
dz T —2z .
—In — - ;
* / it | @ (fi=2+1)] - om
1 14+(1-x)A)?
F1=arctan—(1:-)— , Fy=arctan( , Fa-arctanQ(fH y (=ry cotq’2_6 ,
f
(‘/__”;/—) s L=, =™ | sns=,/"sins ,
zy — x4z L z
T2 =27, (@ Ty2?) + 57, 2 P)(2202,2202) + [0}, 2412203, 2202) . (18)

The quantities & and X in Egs. (15)-(18) specify the shape and size of the
CALO2 cluster, namely
3n < 6 0.051
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Finally, the functions Ji and z) are defined as follows:

i
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The results of calculations of the QED correction with the vacuum polarization
switched off are shown in Table 1 for three different angular acceptances: symmet-
rical wide-wide and narrow-narrow and asymmetrical wide-narrow. For comparsion
we give also the corresponding numbers obtained using the Monte Carlo program
BHLUMI (3] for the symmetrical wide-wide case.

As one can see from Table 1, there is an approximately constant difference,
at a level of 0.3 per thousand, between our analytical results and the MC results
within the first-order correction. A possible cause of this effect is as follows. In
our calculation we systematically ignore terms containing 8% ~ |t|/s as compared
with unity. But it is well known that terms of this kind have double-logarithmic
asymptotic behavior and are parametrically equal to (alt|/7s)In? ]—:l, which is 0.1
per thousand for the conditions at LEP1. We note that the MC program BHLUMI
takes into account all the first-order contributions ([3].

The SABS cross section at LEP1 with the first-order QED correction

Te BHLUMI ww ww nn wn
. CALO1
0.1 166.329 166.285 131.032 134.270
0.3 166.049 166.006 130.833 134.036
0.5 165.287 165.244 130.416 133.466
0.7 161.794 161.749 128.044 130.542
0.9 149.925 149.866 118.822 120.038
CALO2
0.1 131.032 130.997 94.666 98.354
0.3 130.739 130.705  94.491 98.127
0.5 130.176 130.141 94.177 97.720
0.7 127.528 127.491 92.981 95.874
0.9 117.541 117.491 86.303 87.696
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