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It i1s shown that the conductance of a superconductor-normal metal-
superconductor junction can exhibit a significant dependence on the phase of
the superconducting order parameter in the situation when the size of the normal
region of the junction is much larger than the normal metal coherence length and
the critical current of the junction is already exponentially small. The period of
the conductance oscillations as a function of the phase can be equal to » or 2nx
depending on parameters of the system.

PACS: 05.20-y, 82.20-w

The critical current of the superconductor-normal metal-superconductor (SNS)
junction I, = I exp(——LL—) decays exponentially and can be neglected when L >>
Lt (See, for example, Tl]) Here L is the length of the normal metal region of

the junction shown in Figure, L = \/—% is the coherence length of normal metal,

T is the temperature, D= '13;— is the electron diffusion coefficient, vg is the Fermi
velocity and [ is the electron elastic mean free path. On the other hand, the x
dependent part of the conductance §G(x) of the SNS junction can survive even in
the case It « L « Li,. Here x =x1—x32, X1,2 are phases of the order parameters
in superconductors composing the junction, L;, = +/D7, and 7, are inelastic
diffusion length and inelastic mean free time respectively. The x-dependence of
G originates from the fact that the amplitude of the Andreev reflection from the
superconductor-normal metal (SN) boundary of an electron into a hole acquires
an additional phase factor exp(ixi2), while the amplitude of the reflection of a
hole into an electron acquires the phase factor exp(—ixi,2). The weak localization
contribution 6Gi(x) to 6G(x) has been considered long time ago [2]. It arises
in the first order approximation in the parameter —:—, & 1 and is connected with
the interference of electrons traveling clockwise and counterclockwise along diffusive
paths with close loops which contain Andreev reflections. Here pp is the Fermi
momentum. The value of §G; is insensitive to the ratio between I and Ly and
the characteristic energy interval which gives the main contribution into 6G; is
€ ~T. The period of 6G1(x) as a function of x is » [2].

In this paper we consider two other contributions §G; and 6G3 to 6G and
show that the period of the oscillations of §G as a function of x can be either =
or 2x depending on parameters of the system and the way how the conductance
is measured. 6G; can be associated with the spatial coherence between electrons
and holes arising due to Andreev reflection from the SN boundary [3]. It arises in
zeroth order approximation in the parameter ;';—7 « 1. The contribution from this
mechanism to the resistance of SN junction was considered in [4-11]. It has been
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pointed out [10] that the electron-hole coherence is extended in the metal over

the distance of order L, = ‘/—2—. Therefore, it is clear that the main contribution

to 6G; comes from the relatively small energy interval e ~ E, = % &€ T and
at Lt € L € Lin, 6G, decreases with L only as L-2. The period of 6Ga(x)
as a function of x is 2x. The sum 6G; + 6§G, gives the main contribution to
6G, provided the voltage drop V between the two superconductors composing
the junction is zero and consequently x does not change in time. In this case,
6G(x) can be measured with the help of an additional lead "C” shown in Figure,
while the phase difference x on the junction can be determined by an additional
Josephson junction. In the case where the resistance of the SNS junction is
measured by applying the voltage V' between the superconductors, there is a third
contribution 6G3 to 6G. The origin of 6G3 is similar to the Debye relaxation
mechanism of microwave absorption in dielectrics. In this case, due to the
Josephson relation, x and, consequently, the quasiparticle density of states in the
metal v(e,z) are functions of time. In other words, at small V the quasiparticle
energy levels move slowly. The electron populations of the energy levels follow
adiabatically the motion of the levels themselves and, as a result, the electron
distribution becomes nonequilibrium. Relaxation of the nonequilibrium distribution
due to inelastic processes leads to the entropy production, to the absorption of
the energy of the external field and therefore contributes to 6G.
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We start with the calculation of 6G;. In the gzeroth order approximation
in the parameter ;’ﬁ the most adequate theoretical description of the system is
provided in the framework of the Keldysh Green’s function technique elaborated for
superconductivity in [12-14]. In the diffusive approximation and in the absence of
electron-electron interaction in the normal metal region of the junction the linear
"response to the external electric field is described by the following set of equations:

+0o
jn=eDvo / cosh® 8 (e, )05 f (e, )de 1)

[+ <

2020(c,2) + (ie — —) sind(e,2) ~ 5(0ex(c, ) sin 26(e,z) =0
8;(sin?(8(¢, )0z x (e, z)) = 0 (2)
D3, {cosh?®8;(¢, 2)0; f1(€,2)} =0 3)

348



Here j, is the normal current density across the junction, vy is the density of states
in the bulk normal metal, Eq.2 is the Usadel equations for the retarded normal
g% (€e,z) = cosf(e,z) and anomalous FR(e,z) = —iexp(ix(e,z))sinf(e,z) Green’s
functions (8(e,z) = 61(¢, ) + 162(¢,z) is a complex variable), Eq.3 is the diffusion
equation for the distribution function of quasiparticles f;, which describes the
imbalance of populations of electron and hole branches of spectrum in metal.
Inside the superconductor 6, =% and 6, =0. The boundary conditions for Eq.2,3
have the form [15]

D8, 0(e,z) =tcos(6(e,0)) COs(?-z(- _ x(€, O+))

2
Dsin(8(¢,0%))0: x(e, z = 0%) = tsm(% - X(€'20+—)) (4)
D cosh 6;(¢, 0%)0; f1(e, 0) = t{fi(e, 0%) — fa(e, 07 )} sin((e, 0+))C°8'1(% - X(E’20—+))x
xfi(e,2=07)=0, fi(e,z = L*) = eV, tanh (5)

2kT
Here 0%(0~,L*) represents the normal metal(superconductor) side of the SN
boundary, t=tovr and t;p is dimensionless transmission coefficient through the SN
boundary, and V is the voltage drop on the junction.
Using Eqs.(1)-(5) we get the expression for the resistance of SNS junction

+o0 € Lt
GsNs = GNL/ dede tanh — +
- kT{cosh02(5,0+)sin 61(¢,0%) cos(¥ — L(‘zﬁl)
T 1 1
+ ,/(; cosh Og(e,z')dx } (6)

Here Gx =ap%, op =e?*Dyy and S=1L, x L, are conductance of the normal metal
part of the junction, Drude conductivity and the area of the junction respectively.
The first and the second terms in Eq.(6) can be associated with the resistance
of the SN boundary and the resistance of the normal region of the junction
respectively. There are two major effects in metal, which are due to proximity of
the superconductor: 1) The effective diffusion coefficient in Eq.3 is renormalized due
to Andreev reflection and is governed by the parameter #,. The correction to the
local conductivity of the metal from this effect leads to the second term in Eq.(6).
2) The local density of states v(e,z) = voRegR(e,z) = vocos b (¢, z) coshby (e, ) in
the metal at small € is suppressed due to Andreev reflection and is governed by
the parameter 6,. The contribution to the conductance of the SN boundary from
this effect corresponds to the first term in Eq.(6). The x dependence of Gsys
originates from the corresponding x dependence of 6, and 6,. It follows from
Eqs.2,4 that near the SN boundary at small € the value of (¢, z) should be close
to its value in the superconductor 6s(e < A)=%. It approaches its metallic value
6um =0 only after the distance L,. The main contribution to Eq.(6) comes from
the energy interval e ~ E. « T. As a result,

E,
6G, =aG’NFg(x) @)
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Here g(x) is a universal function of x with the period 2r; a~1 at L > L, = %
and a~(£)? at L < L. ~

Let us now discuss the contribution of the Debye relaxation mechanism which
arises in the case where the voltage V is applied between superconductors in
Figure and x changes in time % = ZT‘V. Generaly speaking, in this case one
has to solve a nonstationary version of Eqs.2,3. However, in the case when
eV < E. one can use the adiabatic approximation where the time dependences
of 6(e,z,x(t)) and local density state v(e,z,x(t)) originate from the corresponding
time dependence of x(t). The standard expression for the power absorption due
to the Debye relaxation has the form (see, for example, [16])

Q= vV(,'l/de < (/; dD_(e'j%(L))dE)Z > i——_*_n&)—zagfo(é) (8)

(wTin(e)

where U(e, x(t)) is the local density of states averaged over the volume v =LL;L,
of the normal metal region and breackets <> correspond to the averaging over the

period of the oscillations c—'{,— Using Eqs.2,4, one can prove that in the absence

of insulator barrier 7(e,x) = voll1(5-,x). When L < L, (e, x) = Vo%;HZ(E‘c-,x).
Here 1;3(u,x) are universal dimensionless functions. IIi(u > 1,x) ~ (s >
1, x) = cos x exp(—,/u). Furthermore at E. « T one can neglect the e-dependence
of Tin(€). The main contribution to Eq.8 comes from the energy interval u ~ 1
or € ~ E;, where the quasiparticle density of states is significantly suppressed
compared with vy in the absence of insulator at the boundary. As a result, we

have the expression for the contribution of this mechanism to the d.c. conductance
of the junction (Q =V?6G3)

§G3 = oGy - 9)

which can be even larger than Gy. Eq.9 is valid when 5‘—',%‘1 < 1. In this limit
one can introduce §G3(x(t)) which has the magnitude of order of Eq.9 and the
period 27. In the opposite limit eV I >> 1, Q saturates, which means that 6G3
decays as (ch;'.-,. )2.

We would like to mention that the contribution of the Debye mechanism to
the d.c. resistance of a close metallic sample of the Aharonov-Bohm geometry has
been discussed in [17]. In that case the time dependence of the electron density
of states was induced by the change of a magnetic flux @ through the ring. The
important difference is that the average density of states in the normal metal is
flux (and, consequently, time) independent. Therefore, the Debye absorption is
nonzero only due to mesoscopic fluctuations of the density of states, whereas in
the case of SNS junction, the average denmsity of states can be time dependent.
Using results obtained in [17] in the case when '—f'"- »60, Li > L, Lin > L, L3, L,
we can estimate the contribution to §G due to the mesoscopic part of the Debye
relaxation mechanism as 6G3 ~ a; ;—.;Ecéor'?". Here 6o is the mean spacing between
energy levels in the normal metal, a; ~1 when L, « Lin and a1 ~ (—"Ei:h)4 when
Ly > L;,. We will neglect this contribution because, as we will see below,
5GT < 6Gy.
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Another contribution to G which arises in the first order approximation in
the parameter ;% is the above mentioned weak localization correction 6G;. It
reflects the fact that in cource of each Andreev reflection amplitude of diffusion
electron paths aquire mentioned above additional phases +x;., but does not take
into account the spatial coherence between the electron and the hole which arises

due to Andreev reflection. This is correct if Lr €« L or E. € T. As a result [2],

o2 E.Tin for 0D case
5GI=_Q1¥93(X) Linla for 1D case (10)
In I—’l‘“%,i;l for 2D case

Here g¢3(x) is a periodic function with the period 7; 0D case corresponds to
L,Ly,L; € Lin; 1D case corresponds to Ly >» L;p, > L3, L and 2D case corresponds
to Li,Ly> Lin > L.

Ratios between the three above considered contributions to 6G depend on the
parameters and the dimentionality of the system. For example, in 0D case at
0< i{—m <« 1 we have

5G1 Q1 e"’« 6G1 ay 62 T
———%—-——TT,'"; — R T (11)
6G2 a hGN 6G3 a2 ﬁGN .E'C

At large enough eV > ,/;?—nEca (but still smaller than E.), 6G3; becomes much
smaller than 6G,. In this case, x dependent part of the resistance is determined
by the sum (6G; + 6G;). For example, in 0D case the ratio between 6G; (with
the period 7) and 8G, (which has the period 27) is of the order of

8G1 al e (12)
6G, a VhGy

If V=0 and the conductance is measured with the help of the contact ”C” in
Figure, 6G is the sum of 8G; and 6G;, ratio of which is determined by the
correponding terms in Eqs.11,12. These ratios can be both larger and smaller
than unity, which means that the period of the oscillations of §G(x) can be either
7 or 2m. This can explain why some experiments demonstrate « periodicity of
§G (1819 ywhile the others demonstrate 27 period (2021 The reason why 6G,,
which arises only in the first order approximation in the small parameter #, can
be comparable with G, is that 6G; is determined by the small energy interval
e~ E. «T while §G; is determined by ¢~ T.
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