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The "Hodge strings” construction of solutions to associativity equations based
on t-part of t—t* equations is proposed.This construction formalizes and generalizes
the "integration over the position of the marked point” procedure for computation
of amplitudes in topological conformal theories coupled to topological gravity.

PACS: 11.25.-w

1. Topological strings and associativity equation. The “topological string
theory” [1-6] studies genus g "generalized amplitudes” GA, taking values in
cohomologies of the Deligne-Mamford compactification M,, of the moduli space
of complex structures of genus ¢ Riemann surfaces with n marked points. The
pairing between GA, and the cycle C € M, is given by [l, 2, 5] the functional
integral:

(GAg C)(Va, .., Va) = /c . j DVi((21)) ... Va(#(20)) exp(S15(8)), (1)

fields V;(¢(z)) are called ”vertex operators” and ordinary "amplitudes”
Ag(V1,...4Va) correspond to C =M, ,. :

Deligne-Mamford compactification Mo, is a union of My, (set of n noncoin-
cident points on CP; moduli SL(2,C) action) and compactification divisor Comp.
The divisor Comp is a union of components C(S), where S is a partition of n
marked points into two groups consisting of n,(S) and n3(S) points, n; > 1. A
surface corresponding to a general point in C(S) is a union of two spheres having
one common point with n;(S) marked points on the first sphere and n2(S) on
the second. The set of general points in C(S) form a space Mon,+1® Mon,+1-

It is expected that the functional integral for surfaces corresponding to points
in C(S) factorizes and [l]

(GAo, C(S))(Viys- - Vi) =¥ Ao(Viys - Vi, Vi) Ao (Virgas - -0 Vi Vi) (2)

where 7 is a matrix of symmetric bilinear nondegenerate product on vertex
operators. - '

Keel found that the homology ring H. of My is generated by cycles C(S).He
described relations between these cycles in homologies leading (due to (2)) to
constraints on GAy.
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An elegant way of formulation of these constraints uses the generating function
for "amplitudes”. Introducing formal parameters T; we define

1
F(T)= ) AT Vars - T Vid) 3)

k=3

Then
BF(T) 33 F(T) - FPF(T) ,, 8°F(T)

4
8T,0T;0T, | OT0T,0T, OT,0T,0T,  0T,0T;0T, “)

Using factorization property and Keel’s decription of homologies of the moduli
space one can reconstruct GAp from Ao [5], see also [4].

2. Amplitudes in topological conformal theory coupled to topological
gravity. The "Hodge string” construction generalizes the “integration over the
position of the marked point ” procedure [1-4] of computation of amplitudes in
”conformal topological theory coupled to topological gravity”.

The general covariant action S,, of the topological field theory is a sum of
a "topological” (metric independent) Q-closed term S, and a Q-exact term for a
fermionic scalar symmetry Q:

Sm = Stop(4) + Q(R(4),9),

where g denotes the metric on the Riemann surface. The energy-momentum tensor
T is Q-exact:

T=Q(3)=Q(6) (5)

We call topological field theory conformal, if R is conformal invariant, ie. G is
traceless.

We introduce fermionic two-tensor fields 4, such that functions of g, are forms
on the space of metrics and external differential on these forms: Qg=¢66—g.

The action for topological theory coupled to topological gravity is

575 = Sm.+ YG = Seop + (@ + Qg)(R).

The functional integral Z(g,1) over the set of fields ¢ “with the action Srs is
a closed form on the space of metrics. Since G is traceless, Z is a horizontal
[4, 8] 2) form with respect to the action of conformal transformations of metric
and diffeomorphisms of the Riemann surface, thus it defines a closed form on the
moduli space of conformal(=complex) structures on the genus g Riemann surface.

To construct generalized amplitudes we insert at marked points on Riemann
surface fields(zero-observables="vertex operators”) V; such that

Q(V:) = 0,Go, (Vi) =0. (6)

Here Gy, is the superpartner of the component of the energy-momentum tensor
To,- that corresponds to the rotation with the constant phase z — ez of the
local coordinate at the marked point. First condition in (6) is needed to construct

2)Differential form on the principal bundle is called horizontal if its contraction with the vertical

(tangent to fiber) vector is zero. Closed horizontal forms on the total space correspond to closed
forms on the base of the bundle.
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a closed form on the space of metrics while the second provides horizontality of
the corresponding form with respect to diffeomorphisms that leave marked points
fixed but rotate local coordinate {10, 4, 11, 8].

3. Integration over positions of marked points. The integration over
marked points procedure reduces all genus zero amplitudes to the three point
amplitude:

Fijx = Ao(V;, V;, V&),
that could be computed from the topological matter theory.

In conformal topological theory we associate to a zero observable V; a two-

observable V(3 = Grp,-1GRr,-1Vi. Thus, we deform a topological theory to a

L]
family of theories parametrized by ¢, with the action S,(t) = S, + t.~V,-(2), so
sero-observables V' form a tangent bundle to this space of theories [4].

If in the functional integral that computes the measure on My, we first
integrate over the position of the marked point and only then take the functional
integral, the n-point amplitude becomes the derivative in t of the n— 1 point
amplitude.

In the process of integration we should take the special care about the region
where the moving point tends to hit a fixed point since the geometry there is not
a naive one. The contribution from this region(contact terms [3, 9, 8, 6]) leads
to a specific contact term connection on the bundle of zero-observables over the
space of theories and thus on the tangent space to the space of theories.

Repeating this procedure again and again we can recover amplitudes from
Fijx(t). The amplitudes should be symmetric and independent of the order of
integration over positions of marked points.

In other terms, generating parameters T from (3) should become so-called
special coordinates on the space of theories, the derivatives with respect to
special coordinates should become covariantly constant sections of the contact term
connection and symmetric tensor Fyj: (in special coordinate frame) should be a
third derivative of F(T). Moreover, F(T) has to satisfy eq.(4) WDVV equations
(4).

This implies that the contact term connection is quite a special one!

To gain better understanding of this connection we will study the space of
states in 2d theory associated to the boundary of Riemann surface - to the circle.
Moreover, we will restrict ourselfs to the subspace H of this states that are
invariant under the constant rotations of the circle.

Fermionic symmetry Q of the theory and Gg_ reduce to odd anticommuting
operators Q and G_ on H.

Zero-observables V; being inserted at the middle of the punctured disc generate
states h; that are Q and G_ closed:

Qhi=G_h; =0, (7

the sero observable 1 generate the distinguished state ho. The operation of sewing
two discs together corresponds to the bilinear pairing <,>. Integrals of zero
observables along the boundary give operators &; = fsl Vido.
One can show that they have the following properties:
Q=G =QG_+G_Q=0,[Q,&]=0,[&,&;] =0, (8)
QT =eQ,GT = —¢G, 3T =9 9)
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Here transposition ”T” is taken with respect to the pairing <,>, and operator e
commutes with & and anticommutes with Q and G..

In the deformed theory Q(f) =Q + [G-,t;®;] at first order in ¢. To ensure it
globally we will take for simplicity®)

G-, &), 8,]=0. (10)

The contribution from the region near the place where the "moving”i-th point
hits the marked j-th one gives the "cancelled propagator argument”(CPA) constraint
on states h; over the space of theories [3, 8, 9]:

§FP L =G / drGo 4 exp(—1To,+ )®:hj, (11)
0

so 6(CPA)h is G_-exact. Here Tp 4 is the Hamiltonian acting on the space H,
and Gg,+ is its superpartner: Ty, = Q(Go ).

Covariantly constant sections?) of the (CPA) connection will be denoted as
hi(t). This connection induces the connection on the space of zero-observables:
covariantly constant sections of contact term connections V;(t) =ul(t)V; are such
that being inserted in the middle of the disc in the t-deformed theory they produce
covariantly constant sections h;(t):

Ri(t) = limy_.orTo+ &, ho(t)ul (¢). (12)

Let us denote as Ci(t) the matrix of action of ®; in Q(t)-cohomologies. Then the
relation (12) reads:

[hi(t)]@eey = 4 (£)C5 () ho(t)lqe) (13)

here and below [h]q stands for a class of a Q-closed element h in Q-cohomologies.
From the functional integral we get:

Fiji(t) =< hi(t), ®1he(t) > ul(t) (14)

While the string origin of the described procedure is quite natural its consistency
is far from being obvious.

In the next section we will show how to construct solutions to the associativity
equations(thus, all GAo) ) from the "Hodge” data (H,Q,G_,®;, <>) if we assume
the Hodge property and the Primitive element property. In particular, this would
justify the consistency of the “integration over the positions of the marked point”
procedure if the “Hodge” data was obtained from some topological conformal
theory.

Hodge property: There is a set of @ and G._ closed vectors h; such that classes
[hi]q and [h;]c_ form basises in Q and G_ cohomologies.

Primitive element property. There is a class [ho]g in Q-cohomologies such that
the matrix D;, =C,f': ahop is square and non-degenerate. Here indexes a label some
basis in @-cohomologies, C,-b, s is a matrix representing the action of ®; in these
cohomologies, and hop are components of the class [ho]g.

4. "Hodge string” construction. The "Hodge” string construction gives the
solution to the associativity equations starting from the following data: Z, -graded

3n general case onc has to go in for Kodaira-Spencer type arguments, see [6].
4)Flatness of CPA connection is nessesary for the consistency of the procedure.
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vector space H, odd operators Q@ and G_ , even operators ®;, and a bilinear
pairing <,>, satisfying properties (8,9,10),the Hodge property®) and the Primitive
element property.

The construction goes in two steps. In the first step we construct a flat
connection with the spectral parameter from the Hodge data.In ”physical” terms
it is a constraint on the space of states The Primitive element property is not
used in the first step. In the second step with the help of Primitive element
property we induce flat constraint on the tangent bundle to the deformation space
from the constraint constructed in the step one (i.e. we induce connection on
the space of zero-observables from the connection on the space of states, like in
(13)). Then we will integrate covariantly constant vector fields of this constraint
to special coordinates T' on the deformation space and finally construct F(T).

Step 1. From the Hodge data one canonically constructs the connection(first
constructed by K.Saito [12] in a slightly different context)

a0+ 77 Com(l) (15)
such that this connection is flat for all z and Cjgq = C; 4. This connection is
known as the t-part of t—t* equations [7)].

Idea of the proof: The Hodge Property leads to the Hodge Property for Q(t)
and G_ for all t close enough to zero( with the preferred vectors h;(t), such
that h;(t) is G_ exact - they generalize covariantly constant sections of CPA
connection (11)). Consider Q(t,2) = Q(t) + 2G- cohomologies in H ® C[z,z71].
Classes of [Pi(z,z7'hi(t)]q(,:) (for P; being t-independent polynomials) form a
”Hodge” basis in Q(t,z) cohomologies. Next, we construct the ”Gauss-Manin” (in
the sence of K.Saito) flat connection in Q(t,z) cohomologies through its covariantly
constant sections

—ti®;
z

[exp( Nag,)-

The ”Gauss-Manin” constraint written in the "Hodge” basis takes the form of
(15). Since bilinear pairing descends to G_. cohomologies it is ¢t independent in the
"Hodge” basis and can be taken to be equal to 8,,. This leads to the symmetry
of matrix C;.

Step 2. From Step 1 we conclude that there exist a symmetric matrix 7.,
such that

Ciab = 7 Tab-

at;

Let us define special coordinates T, on the deformation space with the help of
the Primitive element

Ta(t) = Tan(t)hop (16)
Statement: There exists a function F(T) defined by
0 P(T) = r(t(T)) (17)
9T, 0T, =

such that it satisfies the associativity equations with 7% = g9,

5)The Hodge property is satisfied, for example, if Q and G_ are two supersymmetries in N =2
supersymmetric quantum mechanics with the discrete spectrum of the Hamiltonian.
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Proof: Explicite check.
Then we define a new set of coordinates®) 7; as linear combinations of T, by:

Ta = Ci,ab(0)hos (18)

A function F(T,(T;)) is the desired function that solves associativity equations
with 7% ,such that its inverse is given by:

(77 1)ij =< ho, CiCjho >= ho,a(CiCj)abhop
Below we present some explicit formulas. Define

T, ...T;.
1ab(t) ZCE’! Jnyab ]" FT) ZF]I ]nJ—T]_ (19)

Then

Fijk =< ho, C;C;Crho >, Fijr1 =< ho, Ci[C}, Cri]ho > (20
Fijkim =< ho, Ci[Cjx1, Crm]ho > +
< ho[Cim, Cj]Criho > + < ho[Cim, C1)Cjrho > + < ho[Cim, Ck]Cijho >
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* 6)The coordinates T; integrate vector fields u; introduced in (12}, (13).
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