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We analyze the response of the ensemble of ls-excitons driven by a femtosecond
optical pulse beyond traditional approach of the slowly varying amplitudes. For
optical pulses of a given duration it is shown that the off-resonance optical field
can evolve into a stable soliton with non-zero asymptotics.

PACS: 02.30.Jr, 42.50.Md, 42.65.Tg, 71.36.+c

Over the past few years, optical pulse durations as short as 6-10 femtoseconds
(fs) pulses have been demonstrated for wavelengths ranged from the blue-green
to the near infrared. These have been widely exploited to generate a unipolar
single-cycle electromagnetic pulse in a variety of nonlinear media [l1] and has
also resulted in a flurry of activity in theoretical studies in order to answer the
question of whether it is possible to obtain the right knowledge relevant to the
dynamics of such pulses within the traditional framework of the slowly varying
envelope approximation (SVEA) operating with a quasi-monochromatic field. From
this point of view, it is of a great importance the recent observation pertaining to
a Kerr self-focusing that SVEA loses its justification long before the pulse duration
approaches an optical cycle [2].

. The problem met by the SVEA in a fs domain is that both the wide spectrum
of the pulse and its intense field increase the number of harmonics have to
be included into the expansion of the polarization in series of field powers and
adjust phase-matching conditions for all harmonics simultaneously. This breaks
down the SVEA basic assumptions of a weakly nonlinear and strongly dispersive
medium, the superposition does not act what, in turn, prevents one in reducing
the consideration to a finite number of interacting waves. And what is more,
quantum-mechanical effects may come into action at the subwavelength scale.

The purpose of this Letter is to go beyond the SVEA to show the advantages of
the self-consistent description based on the semiconductor Maxwell-Bloch equations
(SMBEs) and to impose proper relationships among nonlinearity, dispersion,
dissipation (or amplification), and backward-scattering effects. @ We derive an
asymptotic analytic solution for the induced polarization of excitons at low density.
It gives rise to new features in the quasiadiabatic following which are absent in
the standard SVEA model; known results [3] are also recovered.
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Consider the response of semiconductor on a fs electromagnetic field. It is
described by the total macroscopic polarization P obtained by summing over ali
wavevectors k, P =2Zk d,,,,.Pk, dyc is the interband dipole matrix element; in the
summation, the factor of 2 counts for the spin degeneracy. The time dependence
of P is given in a Hartree— Fock limit by the semiconductor Bloch equations
(SBEs) written in the notations of Ref. [4]:

th 8 P = (ec'k —€,k+ eg)Pk —+
+ (et mx — DB — D Vi g Pa (1)
q

th 8 n,) =dyEP - deEP, (2)

here the subscript of ¢ label corresponding derivative. The summation in the
right-hand side of Eq.(l1) is conventionally termed a Coulomb hole and is given
by the departure of the screened Coulomb potential V) from its unscreened
value. For simplicity the collision terms in Egs.(1) and (2) are neglected; this
places an upper limit of 60 fs on the pulsewidth 7, which can give rise to
the quasiadiabatic following [5]. Since we are interested in low carrier densities,
the contribution dominated by changes in the chemical potential (i.e., phase-
space filling), conventionally called screened exchange, can be neglected, and the
summations g Vi-gPeng, 3q Vi-qnePq and g Vi Py Py, can be also
omitted in Egs.(1) and (2).

Following the steps used to calculate the macroscopic polarization P we
subsequently apply the Fourier transformation to Eqs. (1) and (2), and scale
the transformed polarization P, and excitation density n), with the Wannier
function ) defined in the lattice site. On this way, one can formally write out
PA as

t
Pi(z,t) = wdh7? / (1 — 2A5(z,7)] E(z,7) exp[~wwai(t—7)] dr, 3
- 00
where A labels the discrete exciton energy states. In turn, the macroscopic
polarization P may be written as P(t) = 2d,, 3, [¥a(R=0)]? P\ + c.c.
These equations show that if one knows a functional relation P, = PA(ﬁA,E)
among the induced polarization, excitation density, and the pulse field, then 7i,(E)
may be determined. Furthermore, if both 7,(E) and Py (s, E) are known, then
one can derive, at least formally by resolving the SBEs, the functional relation
P =P(E). This turns the wave equation into a nonlinear partial differential equa-

tion (PDE) for E(z,t) alone. Pursuing such an program substitute the integral
(3) by

¢ m 1k k . ‘
/_w...df -2y ((Ti))T e [1-2)E) (4)

which presumes that the dependence n(FE) is a power series in E and &E. In
principle, the series (4) generates an infinite hierarchy of coupled equations. Thus
the best one can hope to do is to truncate this expansion, i.e. to find an
expansion parameter which makes such a truncation meaningful. In general, this
means long pulses, i.e. wx7, 3> 1, which is essentially the approach first introduced
by Crisp whose expansion parameter was s =1/(wy —w,)7, < 1 [6].
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From Egs. (3) and (4) one can derive the relation

__46‘“7'0 (E - h_:Bz_E'- - .1_ E)’ (5)
TEy e a2 2T E}
where 1o =[1 — 27, (t = —00)], Eo =€xr/2d.y, and €cpc is the exciton binding energy.
Note that we dropped all terms of the order higher than two in the expansion
(4), and that both amplifying and absorbing semiconductors are described by Eq.
(5). It is also of particular importance for the analysis below that the nonlinearity
and dispersion contribute into the polarization (5) with the same sign. In the
plane-wave approximation, its substitution into a classical wave equation leads to

8, E =28y [1 + 16r0(ecac/er) (1 — (h/€x)?8ue) — Bro(ecac/er)(E/Eo)?] E.  (6)

This can be further simplified under the assumption that E; + cE, =~ E,, which
physically means that we consider the fs pulse propagating in the positive direction
of the z-axis, and stipulates that the backward-scattered wave is accounted on the

spatial scale longer than the pulse length. Under these circumstances, Eq. (6)
becomes

P(z,t) =

E, + v;lE: 4+ c1E*Ey + c3Eue = 0, (7
where the following set of parameters is used

Vg T C[I + 47"'0X1 (0)']—1/21 c = Ve 1‘0)(,.((0),

- v, [8x _ 1 hwpr 1
o= (G, w0 - R

where x;(w) is the linear susceptibility of excitons, wpr = 81rsd§,,h—1, and s is
the Sommerfeld factor; xni(0) relates to the traditional cubic susceptibility of the
semiconductor as follows,

4
an(o) = ‘3‘X(3)(3wvwvw)w) |u=0 = 4X(3)(w’w1w’"’w) lw:O .

Equation (7) is the modified Korteweg—-de Vries equation (mKdV) which belongs
to the class of PDEs integrable by the inverse scattering transform {7]. The general
solutions of Eq. (7) are governed by the relative sign between the nonlinear and
dispersion terms, the asymptotic values of the field (the boundary condition) and
by the pulsewidth. Calling E(z =+o00) = E,, the general single soliton solution
takes the form

E(zt) = Ew |1 - 4e”P(1 - Ea/ Bo) ] (8)

(1= Eg/Eo—26%e-8)* + 252¢-%8
Herxe-
B = (t — z/v)/1, + Po, E3 = 2E% + E3, 6§ = Eu/Eo,

[0%x1/0w?]w=0
2E3xmi(0) '

where Ey labels the maximum amplitude of the bright soliton, its displacement
from F. is given by E4 which, in turn, is to be found for a given set of
boundary conditions. It turns out that the solutions FE(z,t) lie in the range
Ew < E < Eo, +486E}. They describe either a bright soliton superimposed on a
continnous wave background, i.e. a unbound soliton, or a hyperbolic-secant solitary

vt o= o7t [+ 27 roxai(0) (3E3, + E})], and 7, =
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pulse; the behavior depends on the value of E,. The transition between bound
and unbound solitons is at E. >0, which may occur when the semiconductor is
biased by a dc electric field. Exactly at this condition, the unbound soliton (8)
is excited and will propagate through the medium of excitons.

In the limiting case E, =0, one can expect that the general solution (8)
converges into the hyperbolic-secant form :

1 [8%x1/ 0w?]w=0 (t - z/v)
E(z,t) = — 4/————5— sech , : 9
(2:t) - i@ - (9)
which is determined exclusively by the given pulsewidth 7,; its velocity is
_ _ xro [0%x
vt = ot (1+7° [_—aw,‘] _0), (10)

This leads to the expected result that the soliton (9) has a lower velocity than
that of a low-frequency electromagnetic wave in the inverted medium (ro = 1),
and a greater velocity than that of a low-frequency electromagnetic wave in the
absorbing ome (ro=-—1).

In the general case of the non-zero boundary condition, the unbound soliton (8)
occurs, and its behavior is a deal more complicated. In Fig.l we plot the intensity
of the single bright solitons with non-zero-boundary conditions for a variety of
different ratios 6. There is a typical spreading out of hump amplitudes for values
of 6§ > 1. Notice also the appearance of asymmetry for & > 0.5. This is due to
the line-broadening by the dc-field E. which shifts the dispersion contour, hence
makes the whole pulse profile asymmetric.
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Fig.!. Normalized intensity versus normalized Fig.2. Dark-grey to dark-black soliton bifur-
time for single bright solitons with non-zero  cation; § =v2/2 - solid, 0.72 — dashes, and 2
boundary conditions; § = 0.75 - solid, 1.0 - — dotes. Note the asymmetry as in Fig.l
dashes, and 2.0 — dots. Note the asymmetry of

the soliton acquired with the growth of §

Let us return to Eq.(5). As we mentioned, the relative contributions to the
polarization of excitons from nonlinearity and dispersion effects are of the same
sign and this dictates our choice of the solution with non-zero asymptotics in the
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form of (8) and rules out the following dark soliton solution

= F 1 4e_p 11
E(z,1) o T (1+26%e-P)2 — 2627}’ (11)

where : :
B = (t—z/v)/r, + Po, and v7! = o1 [1 + 27 roxai(0) (3E3, - E3)).

This solution is depicted in Fig.2 and describes the bifurcation of the dark-grey
soliton state into the coupled state of two dark-black solitons of equal width, with
6 — +/2/2 as a point of bifurcation. Although such topology of the fs field should
be regarded as an illustrative one, it is worth to notice that this refutes the
misconception of Hayata and Koshiba [3] that the prerequisite of its existence is
the presence of a quadratic nonlinearity in the system.

It would be of interest to verify our results experimentally for, say, a
GaAs/AlGaAs guiding structure in which Harten et al. observed the escape of
a sub-picosecond pulse from quasiadiabatic following [8]. This was identified with
carrier density oscillations in the semiconductor. It is anticipated in our study that
the effects of phase-space filling and exciton screening may be quasiadiabatically
ruled out, thus line broadening must be removed. On the other hand, the regime
of quasiadiabatic following requires that the pulse contains several optical cycles,
and hence sets a window for the pulsewidth used in experiments. In addition,
one must have a structure as long as several soliton interaction lengths in order
to ensure the soliton formation. The first step is thus to do shape measurements
to see if the pulse reaches the steady-state shape corresponding to the given
pulsewidth and the material parameters. If the soliton is observable, its shape
can be changed by a seeding dc-field, and this provides a further test on the
theoretical predictions. Therefore, a GaAs/AlGaAs guiding structure of a 1 cm
length at room temperature may yield the predicted behavior upon a 10 GW/cm?
excitation by a Tiisapphire laser generating 20-60 fs pulses at A =850 — 940 nm.
Such an experiment may dramatically change the picture of quasiadiabatic following
in semiconductors obtained so far within the SVEA.
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