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Hybridization-induced interaction of Anderson impurities with orbital angular mo-
mentum [ is revisited. At short distances R < Rc o (I + 1)/kp the interaction has
antiferromagnetic sign and decays as (R;/R)%. At larger distances R > R, the RKKY-
like oscillating interaction sets in. If I increases, then, sooner or later, the system occurs in
the ”short distance” domain, where the intersite magnetic interaction dominates over the
screening processes. It means that, contrary to previous expectations, the nonmagnetic
state of Anderson lattice is unstable at [ — oo

PACS: 75.20.Hr, 75.30.Mb

A permanent interest of theorists to the Anderson lattice model [1] is due to a non-
trivial nonmagnetic ground state (Kondo lattice), which is expected to occur it this model
under certain conditions (see reviews [2, 3]). Initially such a nonmagnetic state was viewed
as a simple collection of basically independent Kondo ions, but it was quickly understood
that the situation is not that simple. At any reasonable concentration of magnetic ions
the Kondo clouds strongly overlap, so that the nonmagnetic state (if any) could only be
a result of some sophisticated collective screening effect. A severe limitation to the non-
magnetic scenario [4] is caused by the conduction-electrons-mediated magnetic interaction
of Anderson ions [5, 6, 7, 8], tending to form a magnetically ordered state. The energy
of magnetic interaction Er,q4 is proportional to the fourth order of the hybridization ma-
trix element V', while the "Kondo energy” Ef, characteristic for screening processes,
is exponentially small in |V|~2. It means that a controlled theoretical analysis of the
nonmagnetic state can only make sense if there is an additional parameter in the model,
which can help to overcome the tendency to the magnetic order formation. It is widely
believed now that the degree of "orbital” degeneracy N of Anderson ion may be such a
parameter. It was first argued by Coleman [9] and Read, Newns, and Doniach [10] that
the screening processes can dominate over the intersite interaction for the Anderson ions
with high N > 1. The nonmagnetic state itself was extensively studied both for so called
SU(N) Anderson lattice model [11, 2] with unspecified external origin for the degener-
acy, and for more realistic model with genuine orbital degeneracy, related to the orbital
angular momentum ! of a magnetic ion {12, 3]. For the former model the energy Eq,
of the competing magnetic state is easy to find, and the criterion of the Kondo lattice
stability can be easily checked: it is indeed fulfilled at large N. For the latter model only
tentative estimates of E,,, were found (see [12, 3, 8]); they seemed to be also in favor of
nonmagnetic state. In the papers [12, 8], however, only the angular dependence of matrix
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elements was taken into account, while, as we will see in what follows, the dependence on
|k| is of crucial importance for high angular momenta I.

The goal of this paper is (i) to study the dependence of effective magnetic interaction
of Anderson ions on distance between ions, and (ii) to reconsider the question about
stability of nonmagnetic state of Anderson lattice at high degeneracy N.

The mechanism for indirect interaction of magnetic atoms, originating from the hy-
bridization of localized and delocalized electrons was proposed in the pioneering paper
[5] by Cogblin and Schrieffer (see also [6]). This interaction is presumably essential (i.e.
it can dominate over the conventional exchange-induced RKKY interaction [13]) in the
resonant case, when the localized level ¢ is situated only slightly below the Fermi level
er, which is supposedly the case for the metals with considerable valence fluctuations
(e.g. Cerium). The original derivation [5, 6] of the interaction, based on the repeated
application of the second order Schrieffer-Wolff transformation [14], was, however, incom-
plete. A straightforward fourth order Schrieffer-Wolff transformation (see [7, 8]), besides
the RKKY-like (though highly anisotropic) Cogblin-Schrieffer interaction, gives rise to
additional important term, reminiscent of usual superexchange {15]. This term alters
the interaction quite dramatically, especially at short distances, where it dominates and
changes the sign of the interaction to the antiferromagnetic one.

In this Letter we restrict our consideration to the case of one electron in the magnetic
shell (like one f-electron for Cerium ions) and consider only the lower spin-orbital multi-
plet, characterized by the total angular momentum J = {—1/2 or I+ 1/2, the degeneracy
of the localized state being N = 2J 4+ 1. We describe a system of two magnetic ions (a
and b) by the Anderson Hamiltonian H = Hgo + Hnyp, where

U
Ho=) excl,cxo+€0 D, minm+ 0} > nimman,
ko M.i=a,b i MAM!

U is the energy of the Hubbard repulsion (we set U = +oo for simplicity); n;ar = f;’M fim,
fiTM creates an electron with J, = M in the unclosed shell of the ith magnetic ion; cfw

creates a conduction electron with momentum k and spin projection 0 = +1/2. The
hybridization Hamiltonian is

Huys = Z ekRi VM(kU)cL,fiM +h.c.,
ikMo

The initial Hamiltonian H can be reduced to an effective interaction H of magnetic
moments, by means of a fourth order Schrieffer-Wolff transformation (see [8]). Consider
degenerate groundstates of the unperturbed Hamiltonian Hy, characterized by quantum
numbers v = {M,, My}. Then, specifying all possible intermediate states |i), we obtain
composite fourth order matrix elements between states |v) and |v'):

B= % (V' |Fhyblia) (3| Hnyslia) (2 Hnyblin) (i [Hngolv) _
(EV - Eia)(EV - Eiz)(EV - Eix)

i] ’iz i3 ;él/,l/'

- _ Z <i>( O(ex — €r) (1)

i (e — e ) (e — €0)?
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Bhth = cos {(k - k')R} {VM; (K'0") Vi, (ko) Vagy (ko) Vi, (K'a") + (a b)} .

Note that expression (1) comprises both usual RKKY-like indirect exchange processes
with electron-hole excitation in the intermediate state (k > kp,k' < kr), and the
superexchange-like processes with two-electron excitations in the intermediate state
(k, k' > kr).

In order to proceed with calculation of matrix elements H, described by general
formula (1), we adopt the " free electron model” (see [3]), in which the conduction electrons
are described by the plane waves and ey = k%/2m. Having in mind an application to rare
earths, we assume that the spatial size of the localized state rg is small (see [16}): much
less than both R and k;l, so that only the contributions of leading order in krg should
be kept. Then the matrix elements of the hybridization Hamiltonian are

Vaalko) = Cif, [ @r61(r) ¥, @V ()™,

1 4(J = oM \?
Jg _
e =75 (1 M)

where V (r) is the hybridization potential, which is spherically symmetric at relevant small
distances r ~ ro, ¥i(r) is the radial part of the localized wave function. Performing the
angular integration, we get at kro < 1

Vi (k,0) = Cify (k/kF) Ve VATV iy _o (), (2)

where Vi, o (kpro)! is a constant. The factor (kro)!, very important in the case of high
l, arises due to tunneling under the centrifugal barrier. Choosing the quantization axis
parallel to R, we can now rewrite (1) in a form

L 2. [ (k/kr)* k2 dk
H=--Pl /kp gJM,(kR)(k—z’_Wx
o ' 20172 !
1y (K k)" k" dE!
X’P_/o gim, (K'R) (k% — k72) + (a & b). (3)

where Iy = |Vi,|*(m/7)?, symbol P means the principal value of the integral, and P=
0m; M, 00, is the “exchange operator”. The real function

9@ = 3 (Cl)” [ dO¥ine—o () cos(zcoso),

-4

depends only on J and |M]|, not on [, and not on the sign of M. It is convenient to
represent g () as a real part of a complex function §ya(z) with appropriate analytical
behavior
(J M)t [
(J+IMD!

where P are associated Legendre polynomials. For the nondegenerate Anderson model
(J = 1/2) one gets g11(z) = e® fiz. In general, gsp(z) = e*Qim(1/z), where Q u

dom(@) = {G+ 1) P o + 1P @) ] dieteto),
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are polynomials of power 2J. Their explicit form for not very high J (e.g., for J = 5/2
in case of Cerium) can be easily found using a program of analytical calculations. The
study of properties of § for general J, M is quite involved mathematical exercise; here we
give only few asymptotics without derivation:

N Bjume®® _ (J + M)
Gom(z) ~ (_i:;)l-Ml—m’ Bjm = T2 M| = 1/2)1(7 = | M) forz > J, (4)
Agm Dyma?
Gam(@) ~ Jo [a/T= (I/TP?] i35 exp (P05 ), (5)

for x < J, where Jp is a standard Bessel function, and

(=)MMEOENE [ (I =2)+M?
22(J = MYWJT+ M) M T T (T o )2

Aim=

Comparison of asymptotics (4) and (5) shows that they match at x ~ J for all values of
M and J.

Since gy (z) is an analytic function in upper half-plane, one can perform the integra-
tion over k' in Eq(3) by residues; introducing dimensionless variable z = kR we arrive
at

. PI, & 2434z
H=—-———Im —_————7 g .
TR Jypn & = 2megryp e (050 (2) ©

We start a discussion from the case of nondegenerate Anderson model: ! = 0,J = 1/2,
where the interaction is isotropic: # = (J(®) . J®) I(R). In the nonresonant case (when
€0 is not especially close to ¢r) there is only one spatial scale R, ~ w/kp, and the
”exchange constant” I(R) has the following asymptotics: For R < R,

1+ 2 }>0,

Iy

P {fl = T1-e

where € = ¢p/ep. This asymptotics is dominated by an antiferromagnetic contribution
of the superexchange processes. For R > R. we get I = Io(ep/A)*(kpR)™3 cos2kr R,
which coincides with asymptotics of the conventional RKKY-interaction.

In the resonant case, when A = ¢p —€p < €, the main contribution to the interaction
comes from a narrow strip of width < A above the Fermi surface. As a consequence,
a new spatial scale R,e; = €r/krA > R, and a new intermediate asymptotics I =
Ip(er/A)(kpR)™%sin 2kp R, valid in the range R. < r < Ry.,, arise. This asymptotics
has a shifted phase of oscillations and slower decay of amplitude, compared to the RKKY
one.

Let us now discuss the general case: [ > 0,J > 1/2. It can be shown that, at ”short”

distances kr R < J, the main contribution to (6) comes from the residues of the integrand,
so that

I(R) =

7T10A1?) { m60R2

ff:AJMaAJMb (kpR)% ex 47 (DJMa+DJMb)}7 (7)

where A = 2mR?e for J =1—1/2 and A = (Dyu, + Dy, )/16J for J =14 1/2. Note,
that the interaction does not start to oscillate at R ~ w/kr, as in conventional RKKY
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interaction, but decreases monotonously, without changing its (antiferromagnetic) sign,
up to R~ R. ~ J/kF.

The physical interpretation of this result is as follows: The main contribution to the
interaction comes from electrons which pass by the magnetic ions with impact parameters
pa ~ pp ~ R. On the other hand, these electons should have angular momentum I,
therefore their momenta k ~ k* = I/R. The composite matrix element H o |V (k*)[* ~
(1/krR)*, which explains the principal features of (7). Note that for short distances,
when k* > kr, the only processes, in which both electrons involved may have so high
momenta, are the superexchange processes. Note also that the position of the Fermi level
does not enter the expression (7). For large distances (kpR > J), all factors in the
integrand of (6), exept the oscillating ones, can be replaced by their value at z = krR.
Then, using (4), we get

. R 2
H~-P () 2(kIF°IBE;|’}{;ﬁ’M‘j:H2 sin (2krR - Z(1Mal +134))) . (8)
For |M,| = | M| = 1/2 it matches with the result of [6].

In the resonant situation we obtain, as in the nondegenerate case, an additional in-
termediate asymptotics: H oc Im {§sas, (kr R)§sa, (krR)}. In particular, at R, € R <
R, it leads to the phase shift /2 and additional factor (kpR)A/ep in the amplitude of
oscillations, exactly like in the nondegenerate case.

At moderate distances the spatial form of interaction differs considerably from the
RKKY form even in the nonresonant case, though in the resonant case the differ-
ence is, of course, stronger. We have calculated the largest matrix element of inter-
action, Hl1 //2211 //3 (x = 2krR) numerically for two systems: the nondegenerate Anderson
model, and f-levels (Cerium). The complete plots will be published elsewhere, here we
only mention that the resulting dependences approach the standard one Frrgy(z) =
z=3cosz — z7*sinz only for z > 15 (for [ = 0) and for z > 30 (for [ = 3). In rare
earths, however, typically 2kr R =~ 10 for nearest neighbors, at these distances the spatial
shape of interaction is quite far from RKKY even without resonance. Thus, neither long
distance asymptotics (8), nor the simple RKKY function may be used for interpretation
of experimental data for Cerium compounds; the k-dependence of matrix elements is es-
sential for all practically important distances. Note, that this k-dependence arises here
already in the leading order in kro < 1, contrary to the case of the standard exchange-
induced RKKY interaction, where the k-dependence of matrix elements occurs only due
to corrections of higher order in kro (see [13]).

There is an important message concerning the stability of the nonmagnetic Kondo-
lattice state in the above results. Since Ajp ~ (41/e)¥ al large | (and small M), we can
conclude from (7) that the energy (per site) in the magnetic state of a lattice of Anderson
impurities is

Emag ¢ —|Vig 14(Rc/0'0)2N1 R, = 2N/ekr, 9
provided the distance between nearest neighbors ag < R.. The energy of the nonmagnetic
(Kondo) state is Ex o —ep exp(—A/Np|Vi.|2), where p is the density of states at the
Fermi surface [9]. Which energy is lower at high degeneracy N = 2l = oo? To answer
this question one rescales the parameters Vi, and krag so that Ex does not change
with ¥V, and then looks, whether Ep,,4/Ex goes to zero or to infinity at N — oo. It was
argued [12, 3] that, to get a proper nonmagnetic state, the rescaling should be done in such
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a way, that both effective coupling constant N|Vk,|>/A and the number of conduction
electrons ”per subband per site” (krpao)®/N remain fixed. The latter means that R./ao
scales as N2/3 and, consequently, the condition ag <€ R, of the non-RKKY behavior is
fulfilled at large N, so that one should indeed use Eq(9) for E.,q4. Then one obtains
Emag/Ex x N 4N/3 _4 o0, which means that the magnetic state, not the Kondo lattice, is
preferable at large N, and the large- N Kondo-lattice scenario is inconsistent in the model,
where the physical source for large N is the orbital degeneracy.
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