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In 1964 Davis and Adams established that a large increase of thermal expansion and
compressibility in the critical region of the v- to a-Ce phase transition occurs predomi-
nantely in the o phase. This provides strong evidence that a tricritical point is realized in
Ce. This also means that the above mentioned transition is not isomorphic and that a-Ce
should have a distorted fcc structure. A scrupulous examination of Jayaraman’s data
(1965) shows that a second order transition line continues beyond the tricritical point to
the vicinity of a triple point on the melting curve. The phase boundary with the tricritical
point and the minimum of the melting curve are reconstructed within the framework of
Landau theory.

PACS: 61.50.Ks, 81.30.-t

1. The P — T-phase diagram of Ce shows a multitude of phases. Except for the body-
centered tetragonal phase appearing at room temperature above 120kbar [1, 2] other
known phases fall into a relatively low pressure domain. They are drawn in Fig. 1 which
is to some extent schematic, reflecting a substantial experimental uncertainty. The data
were taken from [2,3]. The line YZ is a second order transition boundary predicted in
our paper. More precise data are available for the high-temperature part of Fig. 1, where
the melting curve has a negative slope at ambient pressure and goes through a minimum
at around 33 kbar and 935K [4]. This remarkable feature will be discussed below. At the
periphery of Fig. 1 one can see a body-centered cubic (bcc) §-phase, a double-hexagonal
close packed (dhcp) G-phase and two low symmetry phases o (orthorhombic a-Uranium
structure) and «” (monoclinic body-centered) which at room temperature coexist in a
fragile equilibrium for pressures between 40 and 120 kbar. The main part of Fig. 1 is
occupied by the - and a-phases. The widely accepted view is that both y-Ce and a-Ce
have a simple face-centered cubic lattice. Across the line XY separating these phases
a first order transition occurs. It was found that the volume and the entropy changes
at the transition are large at room temperature and below (Av/v R 15%,As 2 15
per atom) and tend to zero beyond 500 K, indicating the existence of a terminal point.
Already in 1958 Ponyatovskii proposed that this might be a, critical point like that in the
vapour liquid system [5]. This implies a singular behaviour of the second derivatives of the
thermodynamic potential (specific heat, compressibility, thermal expansion) which should
tend to infinity at the critical point. Indeed in 1960 Beecroft and Swenson [6] observed a
10 fold increase of thermal expansion in a critical region with respect to that at ambient
conditions. A few years later Davis and Adams [7] in their elegant X-ray diffraction study
confirmed this effect, and this was considered as a further justification for the critical
point concept. But they also made an additional observation, the importance of which
was not properly taken account of: They were able to establish that a singular behavior
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of thermal expansion and of compressibility occur only in the high pressure phase, that is
in a-Ce. This was in fact an ezperimentum crucis which already long ago could have lead
to the unambigous conclusion: instead of an ordinary critical point in Ce “the critical
point of a continuous phase transition” is realized (the general concept was developed
by Landau in 1935 - 37 [8, 9], and is now called a “the tricritical point” (proposed by
Griffiths [10])). According to Landau a 1-st order phase transition between two phases
having different symmetry continues beyond a tricritical point as a 2-nd order phase
transition. In the vicinity of the tricritical point the compressibility etc. diverge, but
only in that phase which has lower symmetry. This is exactly what was observed by
Davis and Adams. We have to recognize therefore that a-Ce should have lower symmetry
than v-Ce. The phase transition from fcc to a distorted fcc-phase was also discovered
in Lanthanum and in Praseodimium, the neighbours of Ce in the periodic table [11 -14],
and within this systematics a distorted fcc structure of a-Ce is quite reasonably expected.
The diffraction patterns for the distorted structures in La and Pr show weak superlattice
reflections together with the set of strong reflections typical for the fcc structure. Due
to the topology of the phase diagram good long range ordered crystals of a-Ce have not
been available, and substantial line broadening masks the weak superlattice reflections.
In the past this prevented a direct observation of the distorted structure of a-Ce.
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2. In this section we analyse the experimental information regarding the high-tempera-
ture part of the phase diagram [4]. Clear evidence will be found for a second order v - a
transition in the vicinity of a triple point on the melting curve. In Fig. 2 the measured
phase boundaries (solid lines) are shown together with our calculations (explained below).
An important feature is the minimum of the melting temperature as a function of pressure.
From the Clausius Clapeyron equation it follows that below the minimum (P < 33 kbar)
the solid is less dense than the liquid, but the situation reverses at P > 33kbar. Jayara-
man [4] attributed this effect to a volume-pressure anomaly in the solid phase, supposing
that liquid Ce is in a “collapsed state” already at ambient pressure showing the regular
volume contraction along with increasing pressure. The anomaly in solid Ce, being very
strong in the critical region around point Y should still be significant in the vicinity of the
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melting curve. This explanation is no doubt qualitatively correct, but within the tricri-
tical point scenario we have to take into account that the anomalous properties manifest
themselves in the low-symmetry phase. This, therefore, has to be the a-phase, which
exists in equilibrium with the liquid around the melting curve minimum. On the other
hand it appears that the neighbouring phase below the border with the 4-phase is the
high-symmetry phase, y-Ce. This becomes apparent from the analysis of the correspond-
ing boundary line, which we identify below as a v — é-phase boundary. This line has a
pronounced downward curvature (Fig. 2) and can be fitted by the equation

T = 1003 — 1.4P — 0.0305P2 (1)

where T is in Kelvin and P in kilobar. The same equation we can write expanding the
equilibrium condition for the chemical potentials (us = p- at the boundary) in powers of
Pand T — Tp,Tp = 1003 K:

1
—(85 — 8y (T — To) + (v5 —vy) P - 5(&5 -k,)P?*=0 (2)
Here s is the entropy per atom, v - the atomic volume and x = —dv/dP is the com-

pressibility. Other quadratic terms which are due to the thermal expansion and the heat
capacity differences give negligible contributions. From the measured data we calculate
the volume and entropy changes across the transition at P = 0:

Us — Uy = —0.0624°% ; 55 — s, = 0.044A3kbar/K (3)

(IA3 kbar/K corresponds to the dimensionless value 7.25 for the entropy per atom). Com-
paring egs. (1) and (2) we find the compressibility difference

ks — Ky =~ 0.0027A3 /kbar (4)

which is only ~ 2% of k,(k, = 0.154° /kbar for the bulk modulus K =~ 230kbar and
Uy R 344° /kbar): There is no evidence for any anomalous increase of x.,. This means
that Ce indeed remains in its “normal” high-symmetry ~«-phase along most of the v — §
line. We come to the conclusion that a possible position of point Z is limited to an
interval of a few kilobar around the triple point (see Fig. 2) being either on the v — 4 line
or on the melting curve.

We can now calculate the coordinates of point Z,(Pz,Tz), and the compressibility
jump at the v — « transition. Suppose first that Pz > 26kbar. Beyond Z the liquid is
therefore in equilibirum with the a-phase: wiq = fa, la = iy + Ap. Expanding piiq — py
in powers of P — Pz and T — Tz we get the equation for the melting curve, P > Pgz:

1
—(81ig = 84 )(T — Tz) + (visg — v4)(P — Pz) — ‘i("liq —Ky)(P = Pz)* —Ap=0 (5)
The main contribution to Au is due to the compressibility jump Ax:
1
Ap = —--2—AI€ (P — Pz)°. (6)

From the linearity of the border between the liquid and the J-phase we find that &y, = &5
and therefore x4 — £ = K5 — £, Eq.(3). Using the measured data we also get

Uig — U5 = —0.38; 8154 — 85 = 0.081 (7
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(the units are as in Eq. (3)).

These values remain constant along the melting line. According to Egs. (3) and (4)
vs — vy = —0.13 at the triple point, while s; — s., does not change appreciably. Using the
values of Eq. (6) we get finally the coefficients in Eq. (5):

Utig — Uy = —0.81; st — 5y = 0.125. ®)

The initial slope of the melting curve on the high pressure side of the triple point is
therefore equal to 4.1 K/kbar. Defining a straight line having this slope and going through
the triple point (dashed line in Fig. 2)

T = 1053 — 4.1P, (9)

we impose three conditions, necessary to calculate Tz, Pz and Axk: Tz and Pz satisfy
Eq. (9); the coordinates of the melting curve minimum, Ty, = 935K and P,, = 33 kbar,
satisfy Eq. (5), and dT/dP = 0 at the minimum of the melting curve Eq.(5). Solving the
corresponding equations we find that

Ak = 0.065A3 /kbar (10)

and Pz ~ 25kbar. This value is indeed very close to (but ~ 1kbar below) the triple
point. As a result, the calculated point is not the true point Z, but point Z’' which falls
on the line Eq.(9) at a temperature T ~ 951 K about 4 K above the v —é-phase boundary.
The estimations show that with the accuracy of ~ 1K and a few tenth of kilobar we can
simply take the projection of Z’ on the v — 4-line to get a correct position of point Z:

Py ~ 25kbar , Ty ~ 947K. (11)

The melting curve calculated using the Eqgs. (5) and (6) (with 77 instead of Tz!) and
shown as curve I in Fig. 2. coincides with the measured one along an interval of about
10 kbar beyond the triple point.

The discrepancy at higher pressure is, of course, not surprising for an approximate
version of 8y, Eq. (6), and is diminished within a more general description (curve 2 on
Fig. 2; see next section).

3. It is most natural to expect that a second order transition line continues from
point Z to the tricritical point Y. Beyond Y a wellknown first order phase transition
occurs (Fig. 1), and to get a quantitative description of this peculiar situation we expand
(following Landau [8, 9] ) the chemical potential p(P, T, u) = u(P,T,0) + Ap(P,T,u) in
powers of some amplitude u, related to the lattice distortion:

Au= Au? +Bu* + Cu®, C > 0. (12)

To avoid misunderstanding we note that the transition to the distorted structure is, most
probably, driven by the softening of some phonon mode at a high-symmetry point in
the Brillouin zone (see Sec. 4). The resulting distortion is some definite superposition of
displacements (corresponding to several points with the same symmetry) which provides
the minimum value of the 4-th order term. The expansion Eq. (12) is written for the
amplitude u of this already selected superposition.

At B(P,T) > 0 a second order transition occurs along the line ZY, defined by the
equation A(P,T) = 0; A > 0,u = 0 for a “normal”vy-phase, A < 0,u # 0 for a distorted
a-phase. Let (P'T") be some point on ZY. Using the expansion

A(P,T) = o(P'T')(T - T') — B(P'T')(P — P") (13)
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we find the discontinuities of the compressibility k = —dv/dP, the thermal expansion
n = dv/dT and the heat capacity c (per atom):

_ @ _ap _eB
=55 M= g5, de=T'op (14)
where Ak = Kk, — K €tc., and all quantities depend on P',T".

The tricritical point Y appears as a crossing point of lines A(P,T) = 0 and B(P,T) =
= 0. In the vicinity of Y

Ak An

B(P,T) » Bo(P,T) = (T - Ty) — B(P - Py) (15)

and Ak, A7, Ac tend therefore to infinity as (I’ — Ty)~!.

Below Ty the v — o phase bondary continues as a line of first order transitions:
B? = 4AC [9]. Within the scope of Eq. (13), taken around Y, and Eq. (16) the
phase boundary is defined by a simple quadratic equation. In terms of the dimensionless
variables ¢ and p

T-Ty 1 ( T—Ty)
t=— ", p=—=|P—Py- 16
T,-Ty ' °~ R Y A (16)
this equation is (for ¢ < 0):
3 2 _ kaksp P,
p+4(t vp) _O,V“kA—kBTz—TY’ (17)
where B2(2) 8 5
P = 0 = e - —
0= 355 ka==, kp 5 (18)

and Bo{Z) = y(1 — ka/ka)(Tz — Ty);a = a(Y), 8 = B(Y) (see Eq. {13)). Although
the information concerning the position of the singular-point Y is vague, the measured
temperature evolution of the pressure-resistance isotherms {4} shows that 530 - 560K is
the most plausible interval for Ty. Taking Ty = 550K and k4 = (Tz — Tv)/(Pz — Py)
(supposing ZY is close to a straight line) we have calculated Py and the parameters Py
and v, fitting Eq.(17) to the measured characteristics of the phase boundary. For the
values

Py = 16.7 kbar, Py = 28 kbar, v =1.12 (19)
the theoretical curve
2 3

goes through the point P = 7.2kbar at T = 300 K and is nearly linear up to 450 K, having
a slope k(T) = dT'/dP slowly changing from 22 to 27 K/kbar. These characteristics
reproduce the measured data well within the experimental uncertainties. Above 450 K
k(T) increases to the value k4 &~ 48 K/kbar at point Y. A substantial increase of k(T
above 450 K was reported [15] but, in total, the data-in this region are controversal.
Provided Ay, Eq. (13), is minimal [9], u? in terms of p, ¢ is definded by the equation:

Bu? = 2P(AK)of ;  (Ak)o = %/2Bo(2), (21)
where

f=ft,p)=—-t+vp++/(t-vp)?+p (22)
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Inserting Eq.(22) into Eq.(13) we get Au(p, t):

A= ~2(AR)oB[2p ~ (8~ D) 1] (23)

and for Av = 8Au/OP and As = —0Ap/3T we find:
1
Av = =2(Ak)oPo(1 + vf)f ; As = -2(Ak)o P (— + — ) I (24)
A B
In particular, at the first order transition line Eq. (20), t < 0,

F(t,p(8)) = 3 (/T+ 3018~ 1) (25)

and using the measured value of the volume jump at T = 300K, Av ~ 4.5 + 4.8 A 3]
we find (for Py, v Eq. (19)):

(Ak)o =~ 0.067 + 0.072 A® /kbar. (26)

Using k4 = 48 K/kbar and kg = 12 K/kbar (for v = 1.12, Eq.(17)), we find from Eq. (24):
As = —(1.61 + 1.73) per atom, T = 300K, in agreement with the measured value [3].

We emphasize that (Ak)g in Eq. (26) is close to Ak in Eq. (10). Comparing Eq. (14)
for Ak and Eq. (21) for (Ax)e we see that the similarity obtained is consistent with
the characteristic temperature scale in the expansion of B, Eq. (15), being much larger
than Tz — Ty and with «(P'T") and S(P'T"), Eq. (13), only weakly changing along the
ZY-line. This does not seem surprising: within the considered interval T is several times
the Debye temperature © = 130K and the scale mentioned above should be of electronic
origin.

The line A(P, T} = 0, which is confined to a relatively narrow pressure interval (Pz—
—Py = 8kbar), is therefore close to a straight line (as was supposed above.). Another
basic line, B(P,T) = 0, having a much smaller slope continues to the higher pressure
region. On a very qualitative ground one can expect the bulk modulus (~ 200 kbar) to be
an appropriate pressure scale in the expansion of B, Eq. (15), but because a linear term
is relatively small (kp = 0.25k4 at P = Py ), the nonlinear dependence on P may become
important at much lower pressure. Indeed, inserting Ay, eq. (23), into eq.(5) for the
melting curve, we found (for the calcualted values of parameters) a substantial deviation
from the measured curve already at P ~ 33kbar. We therefore take into account the
quadratic term ~ (P — Py)? in Eq. (15):

B(P,T) ~ v T—Ty—kB(P—Py)(l—P-QPY)]. (27)
Performing corresponding changes in Ay we got a reasonably good fit of the melting curve
for Q = 40kbar (curve 2 in Fig. 2). As is seen, for this @, a line B(P,T) = 0, having
a slope kg = 12K /kbar at P = Py (= 17kbar), appraoches a maximal T' = 670K at
P = 37kbar. Within this model only small (5 - 10%) corrections to the above determined
parameters, Py, v and Ak, are required to keep an equally good quantitative description
simultaneously in both domains of the phase diagram, where reliable data are available:
around the melting curve minimum and at T < Ty where the first order transition occurs.
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4. The coefficient 3 in Eq. (21) for u? does not enter explicitly in Ay, Eq.(23), and
to determine 3, microscopic information has to be involved. In La and Pr the observed
distortion of the fcc lattice is related to the softening of the zone-boundary transverse mode
(so-called point L in the Brillouin zone) {11, 13]. The dispersion anomalies of this mode
and the frequencies w(L), measured in Ce [16] and in La [17, 18], are almost identical
and one can expect in both metals the same mechanism driving the lattice distortion.
Supposing this is the case, we can estimate 3 using a value of w(L), measured at P =
= 0. Extrapolating Eq. (13) (for P’ = Py, T’ = Ty) to P = Q0 we have in harmonic
approximation: A = 8Py = Mw?/2 (M - atomic mass). An appreciable softening of the
transverse L-mode in Ce was observed from T ~ 900K to room temperature [18]. We
take roughly w = 27 - 10'2sec™! for T = Ty. We get (for Py ~ 17kbar) : 3~ 30A and

2-Po (AK‘)O
g

which is comparable with the displacements measured in Pr [13].

It is worth pointing out, that the above mentioned instability results in a distorted
lattice having at least two nonequivalent atomic positions in the unit cell. Each atom is
displaced, therefore, from the centrally symmetric position, showing that an ionic core
polarization is the source for the lattice instability. Followed by a mixing of electronic
orbitals (having different local parity) this polarization gives rise to the softening of the
phonon modes and to a strong modification of the electronic properties.

We wish to thank A.S.Ioselevich, I.Luk’yanchuk, K.U.Neumann, Ye.G.Ponyatovskii,
and K.R.A.Ziebeck for fruitful discussions.

w?=2f(p,t), 2= ~ 0147, (28)
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