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Motivated by the recent observation of the metal-insulator transition in Si-MOSFETs
we consider the quantum interference correction to the conductivity in the presence of
the Bychkov—Rashba spin splitting. For a small splitting, a crossover from the localizing
to antilocalizing regime is obtained. The antilocalization correction vanishes however in
the limit of a large separation between the chiral branches. The relevance of the chiral
splitting for the 2D electron gas in Si-MOSFETSs is discussed.

PACS: 71.30.+h, 72.15.Rn

Since the appearance of the scaling theory of localization [1] in 1979, it was a common
belief that there can be no metal-insulator transition (MIT) in 2D electron systems since
all the states are localized at arbitrary weak disorder. Recent experiments on high-
mobility Si-MOSFETs by Kravchenko et al [2] showed however an evidence for a MIT at
zero magnetic field which is controlled by the density n, of 2D carriers. For small densities
ns < ne =~ 1011cm~2 the system is insulating with exponentially diverging resistivity in
the limit T' — 0, whereas for n; higher than the critical density a strong drop in resistivity
(by one order of magnitude) is observed for T' < 2K.

The origin of the new metallic phase has not been understood yet. Nevertheless it is
evident that the electron-electron interaction plays an important role as the critical den-
sity, n, is quite low so that the Coulomb interaction dominates the kinetic energy. Their
ratio is ry ~ 10 at the transition point and decreases ns—l/ 2 deep into metallic phase.
Several theoretical approaches to the treatment of the strong Coulomb interaction such
as p-wave [3], triplet {4] or anyon [5] superconductivity and superconductivity resulting
from a negative dielectric function [6] were suggested during the last year.

Besides a strong Coulomb interaction Si-MOS structures are characterized by a spin-
orbit splitting of the spectrum [7]. It originates from a strong asymmetry of the confining
potential V' (z) of the quantum well. The corresponding term in the Hamiltonian of 2D
EG, the so-called Bychkov-Rashba term, is given by [8]

H,, = afd x D). (1)
Here & is the vector of the Pauli matrices, p is the 2D momentum operator, « is a constant
of the spin-orbit symmetry breaking measured in the units of velocity, and [- x -] stands

for the z-component of the vector product. This term lifts the spin-degeneracy at zero
magnetic field and results in the splitting of the spectrum into two chiral branches:

2
D(p) = 7% op, (2)

with the splitting growing linearly with p.
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For a Si-MOSFET, the minimum of the spectrum (2), —eo = —ma?/2, is esti-
mated as 1K [7, 9] while the Fermi energy is er ~ 6K at the transition. Then the
ratio of the concentrations of left- and right-chiral fermions is ni/n_ = (Ver + €0+
++1/€0)%/(V/er + €0—+/€0)? ~ 5. Thus we conclude that the spin splitting results in a dras-
tic change of the internal properties of the system even without allowing for the Coulomb
interaction. This observation may question the remark by Belitz and Kirkpatrick [4] that
the spin-orbit scattering is irrelevant due to a long-ranged Coulomb interaction. The
latter should be strongly modified by the predominance of one type of chirality.

The relevance of the spin correlations was also demonstrated in magnetic measure-
ments [10]. Magnetic field applied in the 2D plane was shown to suppress the metallic
state leading to a huge increase in resistivity. The measurements in a perpendicular
magnetic field show a large positive magnetoresistance at high densities n, > 2n. also
indicating the spin-related origin of the conducting phase.

We argue that the understanding of the new conducting phase as well as the MIT
itself can hardly be obtained without taking the strong chiral splitting into account. Thus
the theory of the metallic state should be the theory of the Coulomb interacting chiral
fermions. The necessary first step then is to consider the noninteracting particles with
the chiral splitting of the spectrum.

In this letter we study the first quantum correction to the conductivity for the non-
interacting particles in the presence of the Bychkov-Rashba term (1) and obtain it as
a function of the spin-orbit splitting. There are three energy scales in the problem: the
first is the Fermi energy er, the second is the chiral splitting A = 2apr between the two
branches (2) at the Fermi level, and the third is the inverse elastic mean free time 77!
introduced by disorder. We will assume €p to be the largest energy scale:

1
€EF > T €F > A 3)

The relationship between A and 77! is not specified so that the variable
z=A7 (4)

that controls the strength of the chiral splitting may vary from 0 to co provided that the
relations (3) are fulfilled. At the critical density, the ratio A/ep is of the order of 1 but
decreases as n;! into the metallic phase. The experimental value of the parameter x
slightly depends on the density, varying from 5 to 10 when n, varies from 10'cm~2 to
3 x 102cm—2.

The spin-orbit scattering at random potential is known to drive the system into the
symplectic ensemble resulting in an antilocalizing correction to the conductivity Ao symp =
= (e?/mh) In(l, /1) [11], where [ is the mean free path, I, = (D7,)'/? is the phase-breaking
length associated with the phase relaxation time 7,, D is the diffusion coefficient. In the
case of the Bychkov—Rashba term, SU(2) symmetry is broken on the level of the regular
Hamiltonian while the potential scattering may be considered as spin independent. From
the symmetry consideration one might expect that the symplectic correction Aosymp
should be recovered in the limit of a large spin splitting. We will see however that the
correction becomes antilocalizing at z = (I,,/1)/® <« 1, nearly approaches Acgym, for
z <1 but vanishes for £ 3> 1. Such a peculiar behavior is due to the presence of the two
chiral branches that are well separated in the limit A > 71,
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Weak localization effects in the presence of different types of spin-orbit splittings,
including the Bychkov-Rashba one, were studied extensively in Refs. [12]. However the
authors were interested mainly in the behavior of magnetoresistance while the quantum
correction at zero magnetic field and for z > 1 when H,, cannot be treated as a small
perturbation had not been investigated.

We consider a 2D noninteracting electron gas with the Bychkov-Rashba term in the

Hamiltonian: "

P N .
H= o + apyo, — apgoy, + U(r), (5)

where U(r) is a random spin-independent impurities’ potential, which for the sake of
simplicity is assumed to be Gaussian é-correlated: (U(r)U(r')) = 6(r — r')/2mv7. Here
v = m/2w is the density of states for the free Hamiltonian p?/2m.

The classical conductivity can easily be shown to be independent on z and given by
the Drude formula o = ne?r/m provided that the random potential is d-correlated. The
first quantum correction to the conductivity {13] is given by the expression [14]

e? vl d’p 11

T2 | G G @GR EN T (GAR)T (G (o) / (gjr()l2 (),
(6)

where (G™4) are disorder-averaged retarded (advanced) Green functions which for our
problem are nondiagonal in the spin space and the static Cooperon C(q) is determined
by the ladder equation
§xrghe 1

2rvr  2mvr ) (27)

Ao = —

e 6Rm + = (@4 p+ D ogMa. )

Ciala) =

The averaged Green function obeys the Dyson equation (G(p))~' = G (p)~! — %,
where G(© (p) is the Green function of the unperturbed Hamiltonian. In the quasiclassical
limit, ep7 > 1, only diagrams without intersections of impurity lines are important and
the self-energy function

af 1 d2p N 8
2R AT 27‘(1/7' (271,)2 ( (p)) .

On solving the Dyson equation we obtain the Green function that can be written near
the poles as (n = p/p)

—£(p) % 57 + A(ny0z — 120,)/2
(@ -2 x5) (@ +2£4)

Here we have taken an advantage of A < er and substituted ap by A/2. The relaxation
times for the two chiral branches appear to be equal to each other and coincide with the
mean free time 7. This is a consequence of the model with é-correlated disorder. For a
more realistic model with finite correlation length the lifetimes will be different for the
two chiralities but the difference will be small in the limit A € ep.

The crucial quantity that determines the spin structure of the Cooperon is the integral
of the retarded and advanced Green functions,

1
Tsg (q) 2rvT (27r)

(GF4(p)) = (8)

2<G“( + N (@A-p+ 3N ©)

120



Calculating this integral as a function of x, expanding to the second order in ¢, and
substituting into Eq. (7) we get

. A1
Cla) = 2%1/(7('1) ’

(10)

where the operator A(q) =1i-1 (q) expressed in terms of the total Cooperon spin
S = (6% +64) reads

1 6+3z2 +2t 50\ a2 a2
1122 81+z2)° ‘”)(S = 5:)-

y _122 2

_2%(6 + 32° + z*)
i1+ 223

T -

(ax8)** —

The next step is to invert the matrix A and to obtain the Cooperon. According to
Eq. (11), the singlet mode is gapless while the triplet sector acquires a gap proportional
to z. To study the lifting of the triplet sector consider first the case of small z <« 1.
Then, for gl 3> =, the spin structure of A may be neglected so that A~! = (2/¢2I)i. For
gl < z, the triplet sector of the inverse operator A~ becomes complicated, with different
triplet modes having different gaps because of the low symmetry of Eq. (11), but this
region does not contribute to the logarithmic integral over g. So we may write

. 2 S? 2 82
-1 .o _Z _ = s v
A7 = q?l? (1 2 ) + @l +22 2 (12)

This is not an exact formula but it captures correctly log-large terms in g-integration.
Inserting (12) to Eq. (10) and performing the integration, we obtain the expression
for the Cooperon integral:

/lﬂ Za Cgala) = —— l—‘a+3f 52350 — (ke " oo
1, (2m)2 78e Vv= 8mlvvs T3 "7 "7 f Zoi e
» =1

(13)

where the contribution of the triplet sector,

! In l—i“i for r « ;l:;
f (a:, —l‘ﬁ) ={Inl for Zl: K<Ll (14)
O(1) forz > 1.

The last thing to do it to compute the integral of four Green functions in Eq. (6):

(‘2’1‘)’2 (GA@)I#(GR(P) (G @) (G4 (p))*° =

_Amvr®
T 14 z2

z? Y] z? PV} A8
[(1 + 3) gHegrh 4 T (042027 + gk, )} . (15)

This integral is diagonal in the spin space for small z « 1 but has a more complex
structure for £ 3> 1 when the chiral branches are well separated.
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Finally, we combine all together. Substituting (13) and (15) into Eq. (6), after some
arythmetics with the Pauli matrices we obtain the final expression

- (—;— +:c2) f (:z:, lT‘p)] , (16)

Let us study Ac as a function of z for a given l, > . For z < 1/, the spin splitting
can be neglected and we obtain the orthogonal universality class correction Aor¢h/ Which
can be interpreted as a sum of a localizing contribution from the triplet sector and an
antilocalizing contribution from the singlet sector. Then, for l/l, € z < 1, the triplet
modes acquire a gap that reduces their contribution and the total correction changes its
sign and becomes antilocalizing at

1\/3
@

For z. < = < 1, the antilocalization becomes more pronounced, nearly approaching
AGsymp. However, for x > 1 it rapidly (as z72) goes down to zero. Summarizing, we
present the behavior of Ac in the form

Ao 2n

2@ 1 (1,
mh 1+ x2 l

—1nl—l‘& for z <
2 ¢? ! Lo

Ao ==~ Iln (—{;w3) for - <z < (18)
2_;.5111’-;’- for z>> 1.

The crossover from the orthogonal to the symplectic corrections obtained for z < 1 is
related to the appearance of the gap in the triplet sector of the Cooperon. On the other
hand, the reduction of Ag for £ >> 1 must be attributed to the spin structure of the
integral (15) that annihilates the singlet Cooperon mode in the limit of a large splitting
between the chiral branches. In other words, the result obtained means the absence of
the first quantum correction to the conductivity in the system of 2D chiral fermions with
only one sort of chirality. The other example where a certain type of the spin-orbit
coupling leads to the absence of the first interference correction was considered in [15).
The behavior of Ac as a function of z is sketched in Fig.

A% tn
]
<
0
A sketch of Ao vs. the strength =z
i 1 ) of the chiral splitting; Aosrn =
i, )" 1 ~(2€?/7wh)In(l, /1)
In x
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The large-z asymptotics can be traced up to z ~ /In(l,/{). In order to find Ac
for even larger z, one has to go beyond diffusion approximation to calculate f(z) that
competes with the vanishing term In(l, /1) /.

In conclusion, we considered the quantum interference correction to the conductivity of
the noninteracting fermions in the presence of the Bychkov—Rashba spin-orbit interaction.
At small chiral splittings, £ < 1, the correction changes the sign and becomes antilocaliz-
ing. It vanishes for z 3> 1 when the scattering between the different chiralities is strongly
suppressed. The present theory may be considered as the step toward the understanding
of the conducting phase in Si-MOSFETSs that are likely made of the Coulomb-interacting
chiral fermions. It might also explain a low temperature log T behavior of the resistivity
obtained for some samples below 300 mK deep in the metallic phase. The correction is
antilocalizing, Ao ~ —C(e?/h) In(T/To), with very small C ~ 1072 [9] that is consistent
with our formula for the experimental values of z > 1.
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