
Supplemental material to the article

High-temperature Aharonov-Bohm
effect in transport through a
single-channel quantum ring

In this supplemental material we apply the approach based
on the picture of resonant tunnelling through pairs of levels in
the ring outlined in Sec. 2 of the main text to the case of a ring

with impurities (addressed in Sec. 4 within a different formal-
ism). We focus on the antiresonances at φ = 1/2 and disregard

backscattering off the contacts inside the ring [see discussion
below Eq. (11) of the main text].

In the general case, the amplitude gn entering the transmis-
sion coefficient T (φ) in Eq. (10) of the main text reads:

gn(ǫ, x) =
Ψ+∗

n (0)Ψ+
n (x)

ǫ− E+
n + iΓ/2

+
Ψ−∗

n+1(0)Ψ
−
n+1(x)

ǫ− E−
n+1 + iΓ/2

. (A1)

Here Ψ±
n and E±

n are wave-functions and energy levels of an

isolated ring, see Fig. 1. In a clean ring, Ψ±
n (x) = ψ±

n (x) =
L−1/2 exp(±2πinx/L) and E±

n = ǫµn = (n ± φ)∆, which yields

Eq. (11) of the main text. The interference terms involving am-
plitudes of tunneling through two distinct levels are comparable

with classical contributions (describing tunneling through a sin-

gle level) only if |Eµ
n − Eµ′

n′ | <∼Γ. Therefore the dips in the T (φ)

are related to scattering on pairs of close levels and the inter-
ference terms containing amplitudes from different pairs, can be

neglected. This allows us to restrict our consideration to a single
pair of almost resonant levels.

Let us now consider a ring with sufficiently weak impuri-
ties (see corresponding criterion below). The impurity potential
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Figure 1: Schematics of energy levels in clean (left) and disordered (right)
rings and tunneling of an electron with energy E through pairs of close levels
in the ring. In a clean ring the distance between levels in all pairs is the
same, 2∆δφ, whereas disorder leads to level repulsion: E+

n
− E−

n+1 = 2ξ
n
=

2
√

∆2δφ2 + |V
n
|2.
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V (x) =
∑N

ν=1U(x− xν) can be accounted for by using two-level

approximation for two close levels. Within this approximation
the energies and wave functions of potential-disturbed states are

given by

E+
n − E−

n+1 = 2ξn, (A2)

ξn =
√

∆2δφ2 + |Vn|2, (A3)

Ψ+
n =

ψ+
n + ψ−

n+1Vn/Wn
√

1 + |Vn|2/W 2
n

, (A4)

Ψ−
n+1 =

ψ−
n+1 − ψ+

n V
∗
n /Wn

√

1 + |Vn|2/W 2
n

, (A5)

where Wn = ∆δφ+ ξn, and

Vn =
∫

dxψ−∗
n+1(x)V (x)ψ

+
n (x) =

ir∆

2π

∑

ν
e2πi(2n+1)xν/L. (A6)

is the matrix element of the impurity potential expressed in
terms of reflection amplitude r, and ψ±

n are the wavefunctions

of electrons in a clean ring.
The two-level approximation is valid provided |Vn| ≪ ∆. For

randomly distributed impurities, the matrix element of the po-
tential is estimated as |Vn| ∼ |r|∆

√
N . Hence, the above ap-

proach is justified for |r|
√
N ≪ 1, which is the same inequality

that was used in Sec. 4.2 of the main text.
Due to the level repulsion caused by the impurity potential

the minimal distance between levels in any pair is given by |Vn|,
see Fig. 1 (right panel). When |Vn| ≪ Γ, i.e.

√
N |r| ≪ γ,

impurities do not have any significant impact: as in the case
of a clean ring, there exists a dip in T (φ) which arises due to

the interference term, while the “classical” term is featureless at
φ = 1/2.
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In contrast, in the opposite case, |Vn| ≫ Γ (i.e. for sufficiently
strong reflection |r| ≫ γ/

√
N) the energy distance between lev-

els in any pair is always much larger than Γ, and, consequently,
the contribution of the interference terms to the transmission

coefficient is small compared to “classical” ones:

T (φ) ≃ Tcl(φ) = 4γ2v2
〈

∑

n,µ=±
|Ψµ

n(0)|2|Ψµ
n(x)|

(ǫ− Eµ
n)2 + Γ2/4

〉

ǫ

, (A7)

Remarkably, this does not destroy the dip in the transmission

coefficient: it turns out that in the dirty ring the “classical”
terms acquire sharp dependence on φ.

Indeed, as seen from Eqs. (A3)-(A5), for |∆δφ| ≫ |Vn|
the wave functions in the n−th pair are simply given

by clockwise- and counterclockwise-moving waves ψ+
n and

ψ−
n+1. The “classical” contribution to the transmission coef-

ficient from each of these levels, say level (n,+), is propor-

tional to |ψ+
n (0)|2|ψ+

n (L/2)|2 = 1/L2. In the opposite case,
|∆δφ| ≪ |Vn| , disorder potential strongly mixes clockwise-

and counterclockwise-propagating waves. Consider, for sim-
plicity, the case δφ = 0. From Eqs. (A3)-(A5) we get

Ψ+
n = (ψ+

n + eiϕnψ−
n+1)/

√
2 and Ψ−

n+1 = (ψ+
n − e−iϕnψ−

n+1)/
√
2

with eiϕn = Vn/|Vn|. For many weak impurities, the prod-

uct |Ψ+
n (0)|2|Ψ+

n (L/2)|2 self-averages over the random phase ϕn

which yields a value 1/2L2. This implies that the classical con-
tribution yields a dip of width δφ ∼ |Vn|/∆ ∼

√
N |r| in the

transmission coefficient, where T decreases by a factor of 2.
The physical picture discussed above, in particular, transition

from the interference to “classical” mechanism of formation of
the dip can be illustrated by an example of the ring with a

single impurity. As seen from Eq. (29) of the main text, in this
case the transmission coefficient is given by the Lorentz-shape
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antiresonance:

T ≈ 2γ
π2δφ2 + |r|2/8

π2δφ2 + γ2 + |r|2/4. (A8)

We see that the transmission coefficient at φ = 1/2 is no longer

equal to zero and the antiresonance broadens so that its width
becomes

√

γ2 + |r|2/4. We also find that the depth of the dip
changes from 2γ to γ with increasing |r|. In other words, in

contrast to the antiresonance width, its depth remains paramet-
rically the same. The “classical” and interference contributions

to Eq. (A8) read

Tcl(φ) =
2γ(π2δφ2 + |r|2/8)
π2δφ2 + |r|2/4 , (A9)

Tint(φ) = − 2γ3(π2δφ2 + |r|2/8)
(π2δφ2 + |r|2/4)(π2δφ2 + γ2 + |r|2/4). (A10)

As seen, the interference contribution leads to formation of the
dip at γ ≫ |r| and can be neglected for γ ≪ |r|.
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