
Supplemental material to the article

Complex singularities of fluid velocity autocorrelation
function

Methods.

A. Pade-approximation: numerical multipont continued fraction algo-

rithm. Here we discuss the construction of the Padé-approximants that interpolate
a function given N knot points. Pade-approximants are the rational functions (ratio

of two polinomials). A rational function can be represented by a continued fraction.
Typically the continued fraction expansion for a given function approximates the

function better than its series expansion.
Algorithm: for a function f(xi) = ui with values ui at N knots xi, i =

1, 2, 3, . . . , N , the Pade-approximant is

CN(x) =
a1

a2(x−x1)
a3(x−x2)

a4(x−x3)

...aN (x−xN−1)+1
+1

+1
+ 1

, (1)

where ai we determine using the condition, CN(xi) = ui, which is fulfilled if ai satisfy
the recursion relation

ai = gi (xi) , g1 (xi) = ui, i = 1, 2, 3, . . . , N. (2)

gp(x) =
gp−1(xp−1)− gp−1(x)

(x− xp−1) gp−1(x)
, p ≥ 2. (3)

B. Pade-approximation: illustrating test-examples. 1. Oscillator power

spectrum amplitude: approximation of the analytical function with 4 poles. As the
first test example we take the function

fosc(ω) =
1

(ω2 − ω2
0)

2 + (ωγ)2
. (4)

This function is proportional to the oscillator power spectrum. We take ω = 3
and γ = 2 and build the Pade-approximant using 300 uniformly distributed knots
at ω ∈ (−10, 10). The result of the analytical continuation is show in Fig. 1. We
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Figure 1: Analytical continuation of oscillator power spectrum from the real axis to the complex
plain by multipoint Pade-approximant: panel a shows the absolute value while and panel b is the
argument

worked with double precision. The relative error of the analytical approximation
was less than 10−10 even in the pole-regions.

2. Stability of the Pade-approximation. We add gaussian noise with zero mean
and σ = 5 · 10−4 to the oscillator power spectrum considered above, see Fig. 2.

Analytical continuation is shown in panels b and c. The “main” poles are still
clearly seen. So analytical continuation by Pade-approximation is quite resistive to
noise if the noise correlation length is short enough.

3. Analytical continuation of ln-function by the Pade Approximant. Now we
illustrate how behaves singular function in the complex plain when we do its Pade

analytical continuation. We take

fln(ω) = ln(1 + ω). (5)

We build the Pade-approximant using 300 uniformly distributed knots at real ω ∈
(0, 50). The result of the analytical continuation is shown in Fig. 3. There is cut

(−∞,−1) in the complex ω-plain. Analytical continuation based on the Pade-
approximant reproduces the cut by the array of poles and knots (where fln = 0), see

Fig. 3. Away from the cut the accuracy of the analytical continuation is satisfactory
as in the upper illustrating example while |ω| < 50.

4. Analytical continuation by the Pade-approximant of the function with the
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Figure 2: (a) – We add gaussian noise with zero mean and σ = 5 · 10−4 to the oscillator power
spectrum. Analytical continuation is shown in panel b and c. The “main” poles show high degree of
resistivity to noise

square root singularity. Finally we take the function with the square root singularity
to test the Pade-approximation:

fsqr(ω) =
√
ω − i. (6)

We build the Pade-approximant using 300 uniformly distributed knots at real
ω ∈ (−10, 10). Then we analytically continue the Pade polinomial (it is in fact

complex even at real ω) to the complex ω-plain as shown in Figs. 4a and b. Array
of peaks and dips in Fig. 4a represent the branch cut: this is typical for Pade-
approximation. Graphs c and d show “exact” absolute value and argument of the

function. The branch cut parallel to the real axis is typical choice for “computer”
build in functions (we have used Mathcad). Pade-approximation have chosen dif-

ferent direction for the branch cut, parallel to the imaginary axis, see panels a and
b. Fig. 4e is the density plot of the absolute value of the difference between the

exact and Pade-approximation |fln − f
(pade)
ln |/(|fln| − |f(pade)ln |). The coincidence
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Figure 3: Analytical continuation of the logarithm: panel a shows the absolute value while and panel
b is the argument

is perfect everywhere except the white zone where the functions differ because the

branch cuts of the Pade-approximation and the “exact function” are different.
C. Limits of applicability of Pade-approximation. As follows from the

examples, if we approximate a function by the Pade-polinomial at certain domain

at the real axis then the analytical continuation is more or less perfect at the circle
in the complex plain (around that domain) with the radius about the length of the

domain.
The branch cuts are represented by an array of poles. There is a problem with the

branch cuts: we can draw them differently in the complex plain, only edges are fixed.
Different choice of the branch cut curve corresponds different analytical continuation.

But the Pade-polynomial chooses the cut curve somehow “automatically”: we do not
well control that. So the Pade-approximation is a useful tool if one needs to identify
the position and types of the singularities of the function in the complex plain

like poles and the the branch cut edges. For functions without branches analytical
continuation in unique and the Pade-approximation well produces it.
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Figure 4: Analytical continuation of the square root function: panel a shows the absolute value
while and panel b is the argument. Array of peaks and dips in panel a represent the branch cut.
Graphs panels c and d show “exact” absolute value and argument of the function. Fig. e is the
density plot of the relative difference between the exact and Pade-approximation. The coincidence is
perfect everywhere except the white zone where the functions differ because the branch cuts of the
approximation and the “exact function” have been chosen differently
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