
Supplemental material to the article

Peculiarities of Faraday rotation in Cs atomic vapor with
use of a cell with thickness less than light wavelength?

We consider a steady-state interaction of a linearly polarized laser field with

a vapor of Cs Λ-atoms confined in an extremely thin cell of thickness L, which
is less than the wavelength λ of the atomic resonant transition. The medium is
subjected to an external longitudinal magnetic field B, directed along the laser beam

propagation. The atomic number density is assumed to be small enough so that the
time of free flight of the atoms with a mean thermal velocity 〈v〉 largely exceeds

the time τ = L/〈v〉 of the atomic flight between two walls of the cell. It is also
assumed that the atoms experience inelastic collisions with the cell walls where they

lose both the optical excitation and atomic coherence between the ground states.
The incident laser beam diameter largely exceeding the cell thickness, thus mainly
atoms flying parallel to windows, which do not experience frequent collisions with the

windows, contribute to formation of the Faraday rotation (FR) signal. With these
two assumptions, we can avoid using a phenomenological constant responsible for

the collisional relaxation of atomic excitation and coherences and take these effects
into account exactly by solving the temporal equations for the atomic density matrix

with proper boundary conditions for each atom (with a given velocity v) separately.
Then, the polarization is found in all orders of the laser field by averaging the total

contribution of the atoms over the atomic velocity distribution, as described below.
The atomic system is presented in Fig. 1, where the levels |1〉 and |2〉 are the

ground states with the magnetic quantum numbers m = −1 and +1, respectively,

and |3〉 is the excited state having zero magnetic quantum number m = 0. The
atoms are excited under the normal incidence by a linearly polarized optical field

Ein exp(ikz− iωt), the frequency ω of which is detuned from the atomic transitions
by ∆ = ω0 − ω + kv, where ω0 is the energy of the excited state, kv is the Doppler

shift for the atoms with velocity v = vz along the field propagation direction (z-axis),
k = ω/c = 2π/λ.

The total Hamiltonian of the interaction corresponding to this system reads

H = h̄(∆+ δ)|1〉〈1|+ h̄(∆− δ)|2〉〈2|− h̄δ|3〉〈3|− h̄Ω−|3〉〈1|− h̄Ω+|3〉〈2|+H.c., (1)
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Figure 1: The atomic system, the levels |1〉 and |2〉 are the ground states with the magnetic quantum
numbers m = −1 and +1, respectively, and |3〉 is excited state having m = 0, γ1,2 are the radiative
decay of the upper level to the ground states 1 and 2, as well as the optical pumping to the other
ground hyperfine levels. In the presence of a longitudinal magnetic field, the Zeeman sublevels of the
ground state are shifted in energy by δ. This leads to a difference in resonance frequencies for left-
(σ+) and right- (σ−) circularly polarized light, having the Rabi frequencies Ω+ and Ω

−
, respectively

where δ = gµ0B/h̄ is the Larmor frequency, g is the gyromagnetic ratio of the
ground state, µ0 is the Bohr magneton. The Rabi frequencies of the circularly

polarized components of the field, acting on the transitions |1〉 → |3〉 and |2〉 → |3〉
with ∆m = +1 and −1, respectively, are defined as Ω±(z) = E±(z)d/h̄. Here the
dipole matrix elements |µ13| = |µ23| = d are the same for both transitions due to

the symmetry of the system.
At a distance z in the medium the electric field amplitude of initially x-polarized

optical field becomes

E(z) =
1√
2
E0(z) {ê+[1 + η+(z)] + ê−[1 + η−(z)]} eikz−iωt, (2)

where ê± = 1√
2
(x̂ ± îy) are the basic unit vectors, and E0(z) is the field amplitude

in transparent atomic medium (or in an empty cavity), which with taking into

account the Fabry-Perot (FP) effect is connected to the incident field Ein by E0(z) =
Eint1

F [1 − r2e
2ik(L−z). Here F = 1 − r1r2e

2ikz, while the transmission and reflection
coefficients of two dielectric windows of the cavity with the refractive indices n1,2

are given by t1 = 2ni/(1 + ni) and ri = (1 − ni)/(1 + ni), i = 1, 2, respectively.
In Eq. (2), η± = ε±(z)/E0(z) take into account the resonant contributions of the
medium ε±(z)(z) imposed to the right- and left-polarization components of the field
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only in the first order using the fact that the dilute character of the vapor implies
|ε±(z)| ≪ |E0(z)|.

The output amplitudes of circular components can be presented in the

form E
(out)
± = (1 − r2)E±(L), where E±(L) = 1√

2
[E0(L) + ε±(L)] ≈

1√
2
E0(L)e

−αL exp[iΦ±(L)] with the phases Φ±(L) = Im[η±(L)] and the absorp-

tion α = Re[η±(L)]. The total atomic responses ε±(z) induced by the field
E0(z) on the corresponding transitions are expressed as a combination of the for-

ward εf±(z) and backward εb±(z) signals. Since in the FP cavity the latter is re-
flected by the first window and then propagates in the forward direction, we have

ε±(L) =
1
F [ε

f(L)− r1ε
b
±(0)]. The fields εf(z) and εb(z) are calculated according to

the formulae (T.A. Vartanyan et al., PR A51, 1959 (1995))

εf±(L) = 2πik
L∫

0

P±(z)dz, εb±(L) = 2πik
L∫

0

P±(z)e
2ikzdz,

where P±(z) are the medium polarizations induced by the electric field on the tran-

sitions |1〉 → |3〉 and |2〉 → |3〉, respectively. Obviously, these two groups of atoms
experience opposite Doppler shifts ∆± = ω0−ω±ω v

c . The density matrix equations

obtained with the Hamiltonian (1) read

d

dt
= − i

h̄
[H, ρ] + Λρ,

where Λ is the relaxation matrix comprising the radiative decay of the upper level

to the ground states 1 and 2, as well as the optical pumping to the other ground
hyperfine levels. These equations are solved numerically for each group of atoms

with the corresponding initial conditions. We take into account the atomic motion
which is assumed to obey the Maxwell distribution W (v) = (u

√
π)−1 exp(−v2/u2)

with u being the most probable velocity. Thus, for polarization rotation angle Φ
averaged over the atomic velocity distribution we obtain

〈Φ〉 = A
∞∫

0

vdv exp(−v2/u2)[J2(x)− J1(v)]

with

J1(v) =
∞∫

0

dtRe[ρ+31(t,∆
+, E0(vzt))(1− r1r2e

2ikvzt) +
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+ ρ−31(t,∆
−, E0(L− vzt))(1− r1r2e

2ik(L−vzt))]

and

J2(v) = J1(v, ρ31 → ρ32),

where the coefficient A is defined as A = 4N
√
πωµ

cuEin(1− r2)
.

Note that the laser Rabi frequency is estimated by the formula Ω/2π = aγ(I/8)1/2

[see, for example, A. Krmpot et al., Opt. Express 13, 1448 (2005)], where I is

the laser intensity in mW/cm2, γ is the decay rate of the excited state (4.5MHz),
and a is a fit parameter (for our case a is of ∼ 0.1). For PL = 5µW and laser

beam diameter of ≈ 1.2mm, the intensity is I = 0.44mW/cm2, and Rabi frequency
Ω/2π = 0.1MHz. For PL = 8.4mW, we have Ω/2π = 1.3MHz.
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