
Supplemental material to the article

Nonlinear generation of vorticity in thin smectic films

1. Bending and Longitudinal sounds. Based on Eqs. (1), (3) from the main text, we can obtain equations
describing bending and longitudinal sounds. We should find the solution of exact equations (1), (2) in the linear
approximation. We expand two-dimensional density of the film in a series of small parameter |∇h| ≪ 1, i.e. ρ =
ρ0 + ρ(1) + · · ·. Then in the linear approximation the Eq. (2) gives

ρ0∂tvα = −(B/ρ0)∂αρ
(1) + ζ∂α∂βvβ + η∇2vα, (S1)

ρ0∂tvz = σ0∇2h, (S2)

where we have substituted

σ = σ0 −B

(

ρ

ρ0
√
g
− 1

)

. (S3)

Here B is the film compressibility module, ρ0 is the equilibrium mass density of the film and σ0 is the equilibrium
surface tension. Next, using the linearized boundary conditions (1), we find

ρ0∂
2
t ρ

(1) = B∇2ρ(1) + (ζ + η)∂t∇2ρ(1), (S4)

ρ0∂
2
t h = σ0∇2h. (S5)

The first equation corresponds to the longitudinal sound, that is a motion in the film plane, and it obeys the dispersion
law ω = ±k

√

B/ρ0−ik2(ζ+η)/2ρ0. The second equation describes the bending sound, characterized by the dispersion

law ω = ±k
√

σ0/ρ0 and discussed in the paper. In the linear approximation these two modes are independent from
each other. We also assume that the longitudinal sound does not excited by the pumping force directly, i.e. we set
ρ(1) = 0.

2. Vorticity in the film surrounded by vacuum. Now we consider the vertical component of the vorticity
̟z = ǫβγ∂βvγ . In the linear approximation ̟z is zero, since the motion of liquid in the film plane is not generated
by the bending mode. Therefore to find ̟z we should go beyond the linear approximation. We take into account
the main nonlinear contribution to ̟z, which is of the second order in the film elevation. Using the Eq. (2) and the
equality ρ(1) = 0, we obtain

(ρ0/η)∂t̟z −∇2̟z = −(σ0/η)ǫβγ∂γh∂β∇2h+ ǫβγ∂β∂α∂t(∂αh∂γh), (S6)

where we have already substituted vz by ∂th in nonlinear terms based on the linearized Eq. (1). Further we assume
that the external pumping is monochromatic and we consider only the steady contribution to the excited vorticity ̟z.
After averaging over time we pass to the equation

∇2̟z = (σ0/η)ǫβγ〈∂γh∂β∇2h〉, (S7)

which is written in the main text. Note that the right-hand-side is zero in the dissipationless case. Now we take into
account the attenuation of the bending mode. Let us consider the case, where the film displacement is approximately
a superposition of two standing waves

h = H1 sin(kxx) sin(kyy) cos(ωt) +H2 sin(qxx) sin(qyy) cos(ωt+ φ), k2x + k2y = q2x + q2y = |k|2. (S8)

To take into account the attenuation explicity, one has to expand the expression over the plane waves

h = −H1

4
cos(kxx+ kyy − ωt)e−β(kxx+kyy) − H1

4
cos(−kxx− kyy − ωt)eβ(kxx+kyy) +

1



+
H1

4
cos(kxx− kyy − ωt)e−β(kxx−kyy) +

H1

4
cos(−kxx+ kyy − ωt)eβ(kxx−kyy) −

− H2

4
cos(qxx+ qyy − ωt− φ)e−β(qxx+qyy) − H2

4
cos(−qxx− qyy − ωt− φ)eβ(qxx+qyy) +

+
H2

4
cos(qxx− qyy − ωt− φ)e−β(qxx−qyy) +

H2

4
cos(−qxx+ qyy − ωt− φ)eβ(qxx−qyy), (S9)

where the damping constant β ≪ 1 should be obtained from the modified dispersion law. The different mechanisms
contributed to the constant β have been discussed in the main text. Next, we substitute the Eq. (S9) into the Eq. (S7)
and obtain

̟z =
2βσ0

η
H1H2

|k|2

k̂2
sinφ

[

kyqx sin(kxx) sin(qyy) cos(qxx) cos(kyy)− kxqy cos(kxx) cos(qyy) sin(qxx) sin(kyy)
]

. (S10)

Qualitatively, the spatial structure is similar to the Fig. 1, presented in the main text. The vorticity amplitude provides
information about the attenuation constant β of the bending sound. Note that β = α/ω, where the constant α is
defined in the main text, see Eq. (4).

3. Bending mode for the film surrounded by air. The linearized Navier–Stokes equation takes a form
∂tv = −∇P/ρa + νa∇2v and it should be supplemented by the incompressibility condition divv = 0. Taking the
divergence of the equation we find that the pressure P should be a solution of the Laplace equation. Thus,

P = P2e
ikr−iωte−|k|z, z > 0 and P = P1e

ikr−iωte|k|z, z < 0, (S11)

and then the linearized Navier–Stokes equation is

{

(∂t + νak
2 − νa∂

2
z )vα = −ikαP2e

−|k|z/ρa,
(∂t + νak

2 − νa∂
2
z )vz = |k|P2e

−|k|z/ρa,
z > 0 and

{

(∂t + νak
2 − νa∂

2
z )vα = −ikαP1e

|k|z/ρa,
(∂t + νak

2 − νa∂
2
z )vz = −|k|P1e

|k|z/ρa,
z < 0,

(S12)
The system has a solution, which is a sum of forced (potential) and eigen (solenoidal) terms







vα = kαP2

ρaω
e−|k|z + κAαe

−κz,

vz = i|k|P2

ρaω
e−|k|z + ikαAαe

−κz,
z > 0 and







vα = kαP1

ρaω
e|k|z + κBαe

κz,

vz = −i|k|P1

ρaω
e|k|z − ikαBαe

κz,
z < 0, (S13)

where we have used the incompressibility condition ikαvα + ∂zvz = 0 and we have also introduced κ2 = k2 − iω/νa.
To find the values of constants A and B we should consider the motion in the film plane. From the mass conservation
law (1), ∂αvα = 0 at z = 0, we obtain

Aα = −kαP2

ρaω

1

κ
, Bα = −kαP1

ρaω

1

κ
. (S14)

The continuity of the velocity component vz at the interface z = 0 leads to the condition P1 = −P2 = P0. Finally, we
find

vα = ∓kαP0

ρaω

(

e∓|k|z − e∓κz
)

, vz =
−i|k|P0

ρaω

(

e∓|k|z − |k|
κ
e∓κz

)

, (S15)

where upper (lower) sign corresponds to the region z > 0 (z < 0). The relation between the pressure P0 and the film
elevation h can be obtained from the kinematic boundary condition (1) ∂th = vz posed at z = 0

P0 = −νaρa
κ(κ+ |k|)

|k| ∂th. (S16)
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Substituting the Eq. (S16) into the Eq. (S15), we obtain the formula for the velocity field

vα = ∓νa
κ̂(κ̂+ k̂)

k̂

(

e∓k̂z − e∓κ̂z
)

∂αh, vz = νa(κ̂+ k̂)
(

κ̂e∓k̂z − k̂e∓κ̂z
)

h, (S17)

which is written in the main text. The dispersion law for the bending mode can be found from the Eq. (9) for the
momentum density jz . In the linear approximation it reads

ρ0∂
2
t h = σ0∇2h+ 2P0, (S18)

and then, substituting the Eq. (S16) into the Eq. (S18), we obtain

ω2 = ω2
0

(

1− iγ√
2
Θ

)

, ω2
0 =

σ0|k|2
ρ0 + 2ρa/|k|

, Θ =
2ρa/|k|

ρ0 + 2ρa/|k|
, (S19)

where γ =
√

νak2/ω0 ≪ 1.
4. Details of derivation the expression for vorticity. As it was explained in the main text, in order to obtain

the steady vertical vorticity one should solve the equation

(∂2
z − k̂2)̟z = −f, f = ν−1

a 〈̟α∂αvz〉, (S20)

with the boundary condition 〈(∂z̟z)
II − (∂z̟z)

I〉 = 0 posed at z = 0. The solution of the equation is ̟z =

ek̂zA(z) + e−k̂zB(z), where ∂zA = −k̂−1e−k̂z(f/2), ∂zB = k̂−1ek̂z(f/2). Up to the first two orders in the parameter
γ, we obtain

̟α = ǫαβ
κ̂+ k̂

k̂
e∓κ̂z∂β∂th, f = ǫαβ

〈[

κ̂+ k̂

k̂
e∓κ̂z∂β∂th

]

[

(κ̂+ k̂)(κ̂e∓k̂z − k̂e∓κ̂z)∂αh
]

〉

, (S21)

and thus

̟z = e∓k̂zC +

〈

ǫαβκ̂1κ̂2k̂2

(κ̂1 + κ̂2)2k̂1
e∓(κ̂1+κ̂2)z(∂β∂th)(∂αh)−

− ǫαβκ̂
2
2

κ̂1k̂1

(

1 +
k̂2
κ̂2

+
k̂1
κ̂1

− 2k̂2
κ̂1

)

e∓(κ̂1+k̂2)z(∂β∂th)(∂αh)

〉

, (S22)

where we have taken into account the continuity of ̟z at the interface z = 0. Hereinafter the operator with i subscript
acts only on the i parenthesis containing the film elevation h. The constant C is defined from the boundary condition.
With the same accuracy, we find

C = (νak̂)
−1ǫαβ

〈(

k̂−1∂β∂th
)

∂α∂th
〉

. (S23)

Substituting the Eq. (S23) into the Eq. (S22) we obtain the answer which is written in the main text

̟z = ǫαβ

〈(

κ̂

k̂
e∓κ̂z∂αh

)

e∓k̂z∂β∂th

〉

+ (νak̂)
−1e∓k̂zǫαβ

〈

(k̂−1∂β∂th)∂α∂th
〉

. (S24)
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