
Supplemental material to the article

Spatial distribution of electric field in a quantum superlattice with
an injecting contact: exact solution

In this Supplementary we present the details of calculations of the spatial field profiles f(x), Eqs. (6MT)–
(8MT)1, and the voltage-current characteristics u(j), Eqs. (9MT) and (10MT). Everywhere in our derivations
presented we employ the scaled variables and dimensionless parameters introduced in the main text.

1. Equations for spatial distributions of the electric field. Here we derive Eqs. (6MT) and (7MT)
and demonstrate that both these expressions become identical in the case j = 1/2.

Our starting point is the differential equation for the electric field (4MT) with the initial condition f(x =
0) = fe. After separation of the variables and integration we get

αx =

f(x)
∫

f(0)

f df

j(1 + f2)− f
. (1)

Next, we make a substitution f = z + 1
2j and rewrite (1) as a sum of two integrals

αx =

z(x)
∫

z(0)

4jz dz

4j2z2 − (1 − 4j2)
+

z(x)
∫

z(0)

2 dz

4j2z2 − (1− 4j2)
. (2)

Depending on the value of the current density j, the expression 1− 4j2 can be either positive or negative, and
therefore both integrals in Eq. (2) should be taken in the different ways.

For j < j∗ = 1/2 Eq. (2) reads

αx =

z(x)
∫

z(0)

4jz dz

4j2z2 − b2
+

z(x)
∫

z(0)

2 dz

4j2z2 − b2
, (3)

where b =
√

1− 4j2 > 0. After introducing an additional substitution ψ = 2jz/b and then taking the integrals
in (3) we get

αx =
1

2j
log
∣

∣ψ2
− 1
∣

∣

∣

∣

∣

∣

ψ(x)

ψ(0)

+
1

2jb
log

∣

∣

∣

∣

ψ − 1

ψ + 1

∣

∣

∣

∣

∣

∣

∣

∣

ψ(x)

ψ(0)

, (4)

which in terms of j can be rewritten as

αx =
1

2j

(

1
√

1− 4j2
log

∣

∣

∣

∣

∣

1 +
√

1− 4j2 − 2jf

1−
√

1− 4j2 − 2jf

∣

∣

∣

∣

∣

+ log

∣

∣

∣

∣

∣

4j
(

j − f + jf2
)

1− 4j2

∣

∣

∣

∣

∣

)∣

∣

∣

∣

∣

f(x)

f(0)

. (5)

Simplifying (5) and taking into account that f(0) = fe we obtain

x1(f) =
1

2αj

(

1
√

1− 4j2
log

∣

∣

∣

∣

∣

(1 +
√

1− 4j2 − 2jf)(1−
√

1− 4j2 − 2jfe)

(1 −
√

1− 4j2 − 2jf)(1 +
√

1− 4j2 − 2jfe)

∣

∣

∣

∣

∣

+ log

∣

∣

∣

∣

j − f + jf2

j − fe + jf2
e

∣

∣

∣

∣

)

. (6)

1The equation numbers with the letters MT, like (6MT), indicate corresponding formulas from the Main Text of the paper.
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Since the arguments of both logarithms in (6) are always positive (see Sect. 2), one can drop the signs of the
absolute value inside the log functions in (6), and thus obtain Eq. (6MT).

Now consider Eq. (2) for the case j > j∗ = 1/2

νx =

z(x)
∫

z(0)

4jz dz

4j2z2 + c2
+

z(x)
∫

z(0)

2 dz

4j2z2 + c2
, (7)

where c =
√

4j2 − 1 > 0. After repeating the calculations described above one can obtain

αx =
1

2j

[

2
√

4j2 − 1
arctan

(

2jf − 1
√

4j2 − 1

)

+ log

∣

∣

∣

∣

4j(j − f + jf2)

1− 4j2

∣

∣

∣

∣

]
∣

∣

∣

∣

∣

f(x)

fe

(8)

and, eventually,

x2(f) =
1

αj
√

4j2 − 1

[

arctan

(

2jf − 1
√

4j2 − 1

)

− arctan

(

2jfe − 1
√

4j2 − 1

)]

+
1

2νj
log

∣

∣

∣

∣

j − f + jf2

j − fe + jf2
e

∣

∣

∣

∣

. (9)

Dropping the modulus sign in (9) due to the reasons discussed in Sec. 2 yields Eq. (7MT).
One should expect that the solutions x1(f) and x2(f), which are obtained for j < j∗ and j > j∗, respectively,

coincide with each other in the limit j → j∗. Simple analysis of Eqs. (6MT) and (7MT) indeed shows that

lim
j→j∗−0

x1(f) = lim
j→j∗+0

x2(f) = xj∗(f),

where

xj∗(f) =
1

α

[

log

(

f − 1

fe − 1

)2

+
2(f − fe)

(f − 1)(fe − 1)

]

. (10)

2. Analysis of the moduli problem. In this Section we demonstrate that the arguments of the logarithms
in Eqs. (6) and (9) are always positive and also derive a compact form of the expression for x1(f), Eq. (8MT).

We start with consideration of Eq. (6), which for the case j < j∗ can be rewritten as

x1(f) =
1

2αj

(

1
√

1− 4j2
log

∣

∣

∣

∣

(f+ − f)(f− − fe)

(f− − f)(f+ − fe)

∣

∣

∣

∣

+ log

∣

∣

∣

∣

(f+ − f)(f− − f)

(f+ − fe)(f− − fe)

∣

∣

∣

∣

)

. (11)

According to the classification given in the main text of the paper there are three different types of the spatial
field profiles f(x). Therefore our analysis of the arguments of log functions in Eq. (11) should be performed for
each of these types separately:

• the first type of f(x)-profiles is determined by the boundary condition satisfying fe < f−. Since the
stationary point f− is an attractor, the electric field strength f remains less than f−. Taking into account
that f− < f+, one can see that the arguments of both logarithms are positive;

• for the second type of f(x)-profiles the boundary condition is f− < fe < f+. The stationary point f+ is
unstable, and therefore the electric field strength is limited by the values f+ and f− so that f− < f < f+.
The later conditions the positive value of the arguments of the log functions in (6);

• the f(x) distributions, corresponding to the third type, always lie above the line f = f+ (see Fig. 1d). In
this case f, fe > f+, and again the arguments of the logarithms are positive.
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Since Eq. (11) is equivalent to Eq. (6), we can also conclude that the arguments of the logarithms involved in
(6) are positive as well. Note that after some simple transformation Eq. (11) can be simplified to the symmetric
form (8MT).

Now consider the argument of the logarithm in Eq. (9)

r =
j − f + jf2

j − fe + jf2
e

for the case j > j∗ = 1/2. Both numerator and denominator of r are quadratic functions of f and fe, respectively.
These quadratic equations have the same discriminant which value is negative for j > 1/2. Therefore r itself is
positive.

3. Equations for the voltage drop across superlattice. In this Section we derive and analyze
Eqs. (9MT), (10MT) for the dependence of the voltage dropped along the superlattices upon the electric current

flowing through it. By integrating the basic equation u =
∫ 1

0
f(x)dx by parts we obtain

u = fc −

fc
∫

fe

x(f) df, (12)

where fc is defined by x(fc) = 1. Substituting the expressions (6MT) and (7MT) into (12) and taking the
corresponding integrals give us

u1(j) =
2(fc − fe) + α

2αj
−

1

4αj2

[

2
√

1− 4j2 arctanh

(

(fc − fe)
√

1− 4j2

fc + fe − 2j(1 + fcfe)

)

+ log

(

j − fe + jf2
e

j − fc + jf2
c

)

]

,

u2(j) =
fc − fe + α

αj
−

2

α
√

4j2 − 1

[

arctan

(

2jfc − 1
√

4j2 − 1

)

− arctan

(

2jfe − 1
√

4j2 − 1

)]

, (13)

where the inverse hyperbolic tangent function is arctanh(y) = 1
2 log

(

1+y
1−y

)

(y2 < 1).

The above equations for u1(j) and u2(j), which are derived for the cases j < j∗ and j > j∗, respectively,
must coincide with each other at j < j∗ = 1/2. In order to check this, we consider the limits

lim
j→j∗−0

u1 = 1 +
2(fc − fe)

α
+

1

α
log

(

fc − 1

fe − 1

)2

, (14)

lim
j→j∗+0

u2 = 2+
2(fc − fe)

α
−

2(fc − fe)

α(fc − 1)(fe − 1)
. (15)

Next, after substituting Eq. (10) into the condition xj∗(fc) = 1 we obtain the equality

1

α
log

(

fc − 1

fe − 1

)2

+
1

α

2(fc − fe)

(fc − 1)(fe − 1)
= 1.

By using this equality, it is easy to see that the expressions (14) and (15) are indeed equivalent.
As a concluding remark, we would like to notice that our major analytical findings for electric field and

voltage, Eqs. (6MT)–(9MT), were additionally verified by comparison with the results of numerical solution of
the basic differential equation (4MT).
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