
Supplemental material to the article

Quantum Hall effect in a system with reservoir of electrons

In the Supplemental Material, we consider a model of a field-effect transistor with an electron channel
produced by two two-dimensional electron systems (2DES) (Fig. 1). The systems are located in two different

Figure 1: Schematic of a field-effect transistor with an electron channel containing two 2DES located in narrow
quantum wells L1 and L2 which are separated by distance d. The electron systems in the quantum wells are
electrically connected and, therefore, have the same value of electrochemical potential ζ. A gate of the transistor
is denoted by G. Electrons get in the quantum wells from donor layer DL and from a source of the gate voltage
Vg. Electrical fields are equal to Eg between the gate and well L2, E between the wells, and Ed between well L1
and the donor layer. Chemical potentials µ1 and µ2 of electrons in wells L1 and L2 are measured from subband
bottoms ∆1 and ∆2 respectively. Energy ranges occupied by electrons at B = 0 and temperature T = 0 are
shaded

quantum wells of a fixed profile with negligible tunneling between them. The wells are electrically connected,
so that the electrochemical potential of electrons ζ is equal in the systems and electrons can move between
the wells. Similar model was considered in Refs. [10, 16], and such structures can be easily produced. Due to
difference of electron densities in the two 2DES, the well known magneto-oscillations of the chemical potential
occur in these systems asynchronously. This leads to magneto-oscillations of the electrical potential difference
between the wells, which are necessary to keep there equal values of the electrochemical potential. Since chemical
potentials of 2DES and electric field between the wells are related to an electron density in 2DES, variation of
all these quantities occur self-consistently.

The well width is much less than d and dg. The gate is considered as an ideal metal, so that electric field
exists only in a space between the gate and donor layer DL. Areal density of charged donors Nd is assumed
to be constant. Difference of the electrochemical potentials between the electron system and gate is equal to
|e|Vg. Electric fields are determined by areal electron densities. Then it is easy to obtain the following relations
between electron densities ns1 and ns2 and chemical potentials µ1 and µ2 of 2DES:

|e|(Vg − Vg0) = Λ [(ns1 + ns2)dg + ns1d] + µ1(ns1, B), (1)

|e|(Vg − Vg0) = Λ(ns1 + ns2)dg + µ2(ns2, B) + ΛNdd+∆2 −∆1. (2)

Here, Vg0 is the gate voltage at which the electron channel gets depleted (ns1 + ns2 = 0) at zero magnetic field,
Λ = 4πe2/χ, where χ is the dielectric constant. Vg0 is determined by several unknown parameters of the system
one of which is the work function of the gate material. ∆1 6= ∆2 for wells of different width.
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From Eqs. (1) and (2) one can get the following equation for quantum capacitance per unit area C0 =
|e|dns/dVg:

C0 =
χ

4πdg

[

1 +
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2 +D
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2 /D
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1

]−1

. (3)

Here, D
(th)
l = ∂nsl/∂µl (l = 1, 2) is the thermodynamic density of states of electrons in well l. In the model

under consideration, the electron-electron interaction is included through the mean electric field between the
wells only. Then, at T = 0, the electron densities are determined as

nsl =

∫ µl

0

D(ε,B)dε. (4)

Here and below, energy ε is measured from a subband bottom. To calculate the D
(th)
l (nsl, B) dependencies we

chose a model form of the density of sates in a magnetic field introduced earlier (see, for example, Ref. [19]):

D(ε,B) = 2αN0/h̄ωc + [(1 − α)N0/
√
πΓ]

∑

±,n exp
(

− [ε− h̄ωc(n− 1/2)∓ gµBB/2]2 /Γ2
)

. (5)

Here, N0 = |e|B/hc is the Landau level degeneracy per spin, ωc = |e|B/m∗c is the cyclotron frequency (m∗ is
the electron effective mass), µB is the Bohr magneton, and g is the g-factor. In this equation, the Landau level
broadening by a disorder is described by a Gaussian of width Γ depending on magnetic field: Γ = h̄

√

ωc/πτ ,
where τ is the quantum lifetime. The first term in Eq. (5) describes a small (α ≪ 1) finite density of states
between Landau levels normally observed in experiment. It also removes the singularities in the µ(B) dependence
in the case of well separated (Γ ≪ h̄ωc) levels.

Dependence of capacitance on magnetic field for different Vg can be calculated from Eqs. (1)–(5). However,
because the terms proportional to dg dominate in the right-hand side of Eqs. (1) and (2), we have found
the following procedure to be much more convenient. (i) Analytical equations for dµl/dB were obtained from
Eqs. (1)–(5). (ii) For given values of Vg−Vg0 and B = Bup, electron densities nsl and chemical potentials µl were
numerically calculated from Eqs.(1)-(5). The Bup value was chosen to correspond to a non-integer filling factor
ν, usually we took ν = 3/2. (iii) By integrating dµl/dB over magnetic field in interval (B,Bup), dependencies
µl(B) and nsl(B) for B ∈ (Bdown, Bup) were calculated. (iv) Initial values of µl(Bup) were slightly corrected
(usually the correction did not exceed 1%) to get agreement with experimental results in all (Bdown, Bup) range
(see Fig. 3 in the main text). The main agreement criterion was coincidence of positions of the capacitance
minima (except the ν = 2 minima which will be discussed below).

Parameters in Eqs. (1)–(5) were chosen as following. dg = 850 nm, as in the heterostructure studied experi-
mentally. χ = 10.8 was taken to fit the mean measured capacitance value small corrections to which were the
main subject of the study. α = 0.1 and τ = 2.8 ·10−10 s provided the Landau energy spectrum in form of narrow
peaks on a small pedestal and did not essentially affect a width of the wide capacitance minima observed in
the regime of two occupied subbands. In such a regime, the width of the minima was determined by relation
between an energy gap in which the electrochemical potential was locked and variation of the electric potential
difference between the wells which is proportional to distance d. The cyclotron energy was taken for electrons
with effective mass m∗ = 0.067me. Value of d = 9 nm was chosen to adequately describe both the width and
depth of the minima as is explained below. These values of the parameters were used in calculations for all

gate voltages. g = 2.4 was found appropriate to describe width of all wide minima except of that at ν2 = 1,
Vg = 0.6 V (see. Fig. 3 in the main text). To fit the width of the latter minimum an essentially larger value
of the g-factor is necessary. In Fig. 3 in the main text, results for g = 2.4 and g = 9.6 are shown. It should
be emphasized that very large enhancement of the spin-splitting in comparison with |g| = 0.4 for electrons in
GaAs is a well known fact for 2DES in GaAs/AlGaAs heterostructures when the chemical potential lies in the
Zeeman gap. It is explained [20] by the exchange interaction.
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To get a better insight of the chemical potential locking, consider magnetic field range (B1, B2) in Fig. 4 in
the main text (range II). From energy spectrum in Fig. 4a the following relation for these fields can be easily
obtained:

B2 −B1 ≈ B1
|e|h̄/m∗c

2|e|Λd/hc+ gµB
. (6)

Variation of the electron density in layer L1 is given as

ns1(B2)− ns1(B1) ≈ 2|e|(B2 −B1)/hc. (7)

Eqs. (6) and (7) are exact when α = 0 and Γ → 0. Note that width B2 − B1 decreases with increasing d and
becomes inversely proportional to d when 2|e|Λd/hc ≫ gµB. Similarly, it can be shown that width of region
I also decreases with increasing d. On the other hand, a depth of the capacitance minima increases with d.
Indeed, if α = 0 and Γ → 0, and filling factor in layer L1 is not an integer (i.e., the thermodynamic density of

states D
(th)
1 is large), it follows from Eq. (3) that the depth of the capacitance minima at integer ν2 is given as
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4πdg

d

dg
. (8)

Hence, at small value of pedestal α and narrow Landau levels, parameter d determines depth of the capacitance
minima and strongly affects their width. The chosen value of d = 9 nm describes width of the minima and gives
reasonable value for their depth. Moreover, it correlates with total width dQW = 60 nm of the studied quantum
well containing two electron layers.

Our model describes redistribution of electrons between the subbands, which occurs when the magnetic field
is varied. This effect determines the large width of the capacitance minima and existence of particular quantum
Hall effect states. However, it is clear that a number of important effects are not captured by the model. First
of all, this is the dependence of the spin gap on the position of the chemical potential relative to the Zeeman
sublevels [20], which still is not completely studied. Next, in the model, QHE states at ν = 2 do not appear
while they are present in the experiment. Absence of these states in the model is due to the fact that, at ν = 2,
the electrochemical potential is pinned to the two coinciding levels 2−1− and 1−1+ and an energy gap necessary
for QHE states is absent (see Fig. 4a in the main text). This disagreement may be eliminated within complete
self-consistent calculations taking into account dependence on magnetic field of both, form of the quantum well
and Landau wave functions, as, for example, has been done pertubationally in Ref. [11].
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