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It is known that the temperature dependence of the resistance of superconducting
films in the range Tc < T ≪ Θ (Θ is the Debye temperature), where the dependence

R(T ) associated with scattering by phonons can be neglected, is determined by
quantum effects: weak localization of electrons (WL) and electron–electron interac-

tion in the diffusion (ID) and Cooper channels. The latter contributions are referred
to as superconducting fluctuations (SF) and are commonly divided into three dis-

tinct types: (i) the Aslamazov–Larkin contribution (AL) caused by the addition to
the conductivity from fluctuating Cooper pairs, (ii) the contribution to the density

of states (DOS) reflecting a change in the density of states of normal electrons as
a result of fluctuating Cooper pairing, and (iii) the Maki–Thompson contribution
(MT) corresponding to coherent scattering of electrons constituting a fluctuating

Cooper pair by impurities. The total conductivity of the disordered system is thus
the sum of all the quantum contributions to conductivity added to the bare Drude

conductivity G0
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G00 = e2/(2π2h̄). (2)

Since the thickness of samples under study in the temperature interval under
consideration is smaller than the thermal coherence length lT (and the width is
bigger than lT ), the samples are quasi-two-dimensional with respect to the effects

under discussion. For this reason, for the description of measured R(T ), we use
theoretical expressions corresponding to the quasi-two-dimensional case.

The contributionsWL and ID have the same logarithmic temperature dependence
[17,19] (see Fig. 1):
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where τ is mean free time, A is a numerical constant

A = ap + AID, (4)
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where the constant AID is of the order of unity [17]. The constant a = 1 in the

case of weak spin-orbit interaction (τϕ ≪ τso where τϕ is the dephasing time and
τso is the spin-orbit scattering time) and a = −1/2 in the case of fast relaxation

of the spin (τϕ ≫ τso), and p is the exponent in the temperature dependence of
the dephasing time τϕ ∝ T−p. At low temperatures, when the electron-electron

scattering dominates,
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Figure 1: Temperature dependence of the resistance of wire w = 100 nm replotted as the dimen-
sionless conductance G/G00. The semilogarithmic scale representation reveals logarithmic decrease
of the conductance with temperature owing to WL and ID effects. A = 3.1± 0.05

The contributions from superconducting fluctuations (DOS [18] and AL [20])

depend only on Tc. Thus, Tc can be determined by juxtaposing the measured R(T )
with the results of the theory of superconducting fluctuations (SF) in the region

T > Tc, as it enters the listed equations as a fitting parameter,

∆GDOS(T )

G00
= − ln

(

ln

(

Tc
T

)

/ ln(Tcτ)

)

, (6)

∆GAL =
e2

16h̄

1

ln(T/Tc)
, (7)

2



Table 1. Sample characteristics. w – width; Tc is the critical temperature determined from the quantum contribution
fits together with the pair-breaking parameter δ Eq. (9) and the coefficient A (Eq. (4))

w [µm] Tc [K] δ A

50 2.44± 0.02 0.035 3.1± 0.05
0.1 2.42± 0.02 0.032 3.1± 0.05

The Maki-Tompson contribution ∆GMT (T ) depends also on τϕ through the pair-

breaking parameter [21–23]:
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δ = πh̄/(8kBTτϕ), (9)

β(T, δ) is the function from work [22]:
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where m is an integer m = 0,±1,±2, ..., and
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