
Supplemental Material for

“Fermi points and the Nambu sum rule in the polar phase of 3He”

1. “Gap” equation for the polar phase with the spin-orbit interaction taken into account. In the presence
of spin-orbit interactions we consider the condensate of the form

A
(0)
αi = (βV )1/2

∆

2
δp0

(

d̂αm̂i + καi
)

, (1)

with |καi| ≪ 1. The gap equation receives the form

Ωiα ≡
(1

g
− 1

gm

)

καi∆+
(1

g
− 1

gm
− 2

5
gD

)

m̂id̂α∆+
3

5
gDm̂

αd̂i∆ = −2

∫

d3kdω

(2π)4
Trγ5γαk̂iG(iω, k) (2)

with

G(ǫ, k) =
1

∑

µ=1,2,3,5 Pµ(ǫ, k)γµ −M(k)
γ5 (3)

and
P5 = ǫ, Pα = ∆

(

d̂αm̂i + καi
)

k̂i, M = vF(|k| − kF).

(It is taken into account that (m̂d̂) = 0.) We may rewrite this equation as follows

Ωiα = −2

∫

d3kdω

(2π)4

Tr
(

Pµ(ǫ, k)γ
µ +M(k)

)

γαk̂i

ω2 +∆2
θ +M2(k)

, (4)

where ∆θ = ∆(m̂k̂). Now we have

(1

g
− 1

gm

)

καi∆ =
2

5
gDm̂id̂α∆− 3

5
gDm̂αd̂i∆+ καi∆

(1

2
J (0) − 1

2
J (1)

)

+ (καjm̂j)m̂i∆
(3

2
J (1) − 1

2
J (0)

)

+

+(2κβid̂β)d̂α∆
(1

2
J̃ (0) − 1

2
J̃ (1)

)

+ (2κβj d̂βm̂j)d̂αm̂i∆
(3

2
J̃ (1) − 1

2
J̃ (0)

)

, (5)

where

J (0) =
1

4π2v3F

∫

dφ

2π
d cos θ

∫ Λ2

θ

4∆2

θ

dt
t− 4∆2

θ + 4v2Fk
2
F

√

t− 4∆2
θ

√
t

,

J (1) =
1

4π2v3F

∫

dφ

2π
d cos θ

∫ Λ2

θ

4∆2

θ

dt
t− 4∆2

θ + 4v2Fk
2
F

√

t− 4∆2
θ

√
t

(k̂m̂)2,

J̃ (0) = ∆2 ∂

∂∆2
J (0), J̃ (1) = ∆2 ∂

∂∆2
J (1). (6)

Here the energy cutoff Λθ and the momentum cutoff K are related by expression Λ2
θ/4 = v2FK2 + ∆2

θ (integration is over
momenta with |k − kF| < K). We keep the terms linear in gD and καi. Here

J (0) ≈ 4k2F
π2vF

(

log
2vFK
∆

+ 1
)

,

J (1) =
1

g
− 1

gm
≈ 4k2F

3π2vF

(

log
2vFK
∆

+
1

3

)

,

J̃ (1) = − 2k2F
3π2vF

(7)
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and
καi = ad̂αm̂i + bm̂αd̂i (8)

with a = 3vFπ
2

10
gD
k2

F

and b = vF9π
2

20
gD
k2

F

.

2. Bosonic collective modes in the polar phase. Let us calculate the energy gaps of the bosonic collective modes. In
our calculation for simplicity we neglect spin-orbit interaction. The quadratic part of the effective action for the fluctuations
around the condensate has the form:

S
(1)
eff = (ū, v̄)[1/g − Ω−Π]

(

u
v

)

, (9)

where

Ωαi
ᾱī =

1

gm
δαᾱm̂

im̂ī,

while

uiα(p) =
δAiα(p) + δĀiα(−p)

2

and

viα(p) =
δAiα(p)− δĀiα(−p)

2i
.

Here
[

Πūu(E)
]αi

ᾱī
= i

∫

d3kdǫ

(2π)4
TrG(ǫ, k)γ5γαk̂iG(ǫ − E, k)γ5γᾱk̂ī (10)

and
[

Πv̄v(E)
]αi

ᾱī
= −i

∫

d3kdǫ

(2π)4
TrG(ǫ, k)γαk̂iG(ǫ − E, k)γᾱk̂ī. (11)

The polarization operator can be represented as

Π(E) =
1

π

∫ ∞

0

dz
ρ(z)

z − E2
, (12)

where the spectral function may be calculated using the Cutkosky rule (see the Landau–Lifshitz course of theoretical physics,
vol. 4, chapter 115)

2
[

ρūu
]αi

ᾱī
= −4π2

∫

ǫ>0

d3kdǫ

(2π)4
Tr

(

Pµ(ǫ, k)γ
µ +M(k)

)

γαk̂i
(

Pµ(ǫ− E, k)γµ +M(k)
)

γᾱk̂ī×

×δ(P2(ǫ, k)−M2(k))δ(P2(ǫ− E, k)−M2(k)) = −
∑

±

∫ dφ
(

kF ±
√

t−4∆2

θ

2vF

)2

d cos θ

2π2πvF
√

t− 4∆2
θ

√
t

×

×
(

(
t

2
−∆2

θ)Trγ
αk̂i±γ

ᾱk̂ī± +∆2
θTr(d̂γ)γ

αk̂i±(d̂γ)γ
ᾱk̂ī±

)

θ(t− 4∆2
θ)θ(Λ

2
θ − t) =

=
1

2πv3F

∫

dφ

2π
d cos θ

t− 4∆2
θ + 4v2Fk

2
F

√

t− 4∆2
θ

√
t

(

tδαᾱ − 4∆2
θd̂

αd̂ᾱ
)

k̂i+k̂
ī
+θ(t− 4∆2

θ)θ(Λ
2
θ − t), (13)

where k̂ = (sin θ cosφ, sin θ sinφ, cos θ) while E/2 =
√
t/2 = ǫ+ = ǫ−; k± = kF ±

√
t−4∆θ

2vF
, and ∆θ ≡ ∆(m̂k̂+) ≡ ∆cos θ. In

the similar way

2
[

ρv̄v
]αi

ᾱī
=

1

2πv3F

∫

dφ d cos θ

2π

t− 4∆2
θ + 4v2Fk

2
F

√

t− 4∆2
θ

√
t

(

(t− 4∆2
θ)δ

αᾱ + 4∆2
θd̂

αd̂ᾱ
)

k̂i+k̂
ī
+θ(t− 4∆2

θ)θ(Λ
2
θ − t). (14)

3. Energy gaps and the Nambu sum rule. Let us come to the evaluation of the energy gaps.
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L = S = 0. We take components with α = 2, i = 3. In the v-channel at S = L = 0 the energy gap is equal to zero that
leads to the condition

1/g − 1/gm =

∫ 1

−1

cos2 θd cos θ

∫ Λ2

θ

4∆2

θ

dt
1

4π2v3F

t− 4∆2
θ + 4v2Fk

2
F

√

t− 4∆2
θ

√
t

. (15)

Recall that ∆θ = ∆cosθ while the energy cutoff Λθ and the momentum cutoff K are related by expression Λ2
θ/4 = v2FK2+∆2

θ

(integration is over momenta with |k−kF| < K). Actually, Eq. (15) is equivalent to the “gap” equation that relates the value
of ∆ with the coupling constants g, gm and the momentum cutoff K. In the similar way

1/g − 1/gm =

∫ 1

−1

cos2 θd cos θ

∫ Λ2

θ

4∆2

θ

dt
1

4π2v3F

t− 4∆2
θ + 4v2Fk

2
F

√

t− 4∆2
θ

√
t

t− 4∆2
θ

t− E2
u,L=0,S=0

. (16)

Let us subtract Eq. (15) from Eq. (16). Assuming that vFkF ≫ vFK ≫ ∆ we have:

0 =
2k2F
π2vF

∫ 1

−1

cos2 θd cos θ

∫ ∞

1

dz
1√

z2 − 1

E2
u,L=0,S=0/(4∆

2
θ)− 1

z2 − E2
u,L=0,S=0/(4∆

2
θ)
. (17)

The integrals in this equation may be taken and the result is expressed through the hypergeometric functions:

0 =
4k2F
π2vF

[1

4
w4√π

( 3

8w
π3/2 − 32

15
√
π
F

1/2,1,3
3/2,7/2(−w2)

)

− 1

4
w4√π

( 1

2w
π3/2 − 8

3
√
π
F

1/2,1,2
3/2,5/2(−w2)

)

+
1

3
w2 +

1

3

]

, (18)

where

w =
−iEu,L=0,S=0

2∆
.

Technically we calculate the value of the integral in Eq. (17) at real values of w. Next, the obtained result is to be continued
analytically to the whole complex plane. It is done in the way utilised inside the MAPLE package.

Numerical solution of this equation gives

Eu,S=0,L=0 =
√

12/5
(

1.007853779− 0.3828669418 i
)

∆. (19)

This solution is illustrated by Fig. 1, where the absolute value of the right hand side of Eq. (18) in the units of
4k2

F

π2vF
is

represented as a function of w = A + iB. One can see, that there is the solution in the physical part of the complex plane
(at Reω < 0, Imω < 0). It corresponds to the energy gap of the given collective mode.

L = 0, S = 1. We take components with α = 1, 3, i = 3.
In the u-channel at L = 0, S = 1 the energy gap is equal to zero that leads to the condition, which coincides with Eq. (15).

In the similar way equation for the v channel gives

Eu,S=1,L=0 = 0, Ev,S=1,L=0 = Eu,S=0,L=0 (20)

L = 1, S = 0. We take components with α = 2, i = 1, 2. In the u channel

1

g
=

∫ 1

−1

1− cos2 θ

2
d cos θ

∫ Λ2

θ

4∆2

θ

dt
1

4π2v3F

t− 4∆2
θ + 4v2Fk

2
F

√

t− 4∆2
θ

√
t

t− 4∆2
θ

t− E2
u,L=1,S=0

. (21)

At Eu,L=1,S=0 = 0 we may rewrite this equation in the form with the integration over k instead of integration over t:

1

g
= 8π

∫

d3k

(2π)4
sin2 θM2(k)

2(∆2cos2θ +M2(k))3/2
. (22)

One can check that after the integration over θ the right hand sides of the two expressions Eq. (4) and Eq. (22) coincide.
Therefore, in the absence of the extra interaction that stabilizes direction of m̂ in this channel the Goldstone boson appears
as it should.
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Figure 1: The absolute value of the right hand side of Eq. (18) in the units of
4k2

F

π2vF
is represented as a function of w = A+iB

In the presence of this extra interaction we have the following equation for the determination of Eu,L=1,S=0:

1

gm
=

∫ 1

−1

1− cos2 θ

2
d cos θ

∫ Λ2

θ

4∆2

θ

dt
1

4π2v3F

t− 4∆2
θ + 4v2Fk

2
F

√

t− 4∆2
θ

√
t

(

t− 4∆2
θ

)

E2
u,L=1,S=0

t(t− E2
u,L=1,S=0)

. (23)

In the v channel we have

1

g
=

∫ 1

−1

1− cos2 θ

2
d cos θ

∫ Λ2

θ

4∆2

θ

dt
1

4π2v3F

t− 4∆2
θ + 4v2Fk

2
F

√

t− 4∆2
θ

√
t

t

t− E2
v,L=1,S=0

. (24)

Subtracting the gap equation we may represent this expression as follows

1

gm
=

∫ 1

−1

1− cos2 θ

2
d cos θ

∫ Λ2

θ

4∆2

θ

dt
1

4π2v3F

t− 4∆2
θ + 4v2Fk

2
F

√

t− 4∆2
θ

√
t

(

E2
v,L=1,S=0(t− 4∆2

θ) + 4∆2
θt
)

t(t− E2
v,L=1,S=0)

. (25)

The value of 1/gm should be sufficiently large in order to make vacuum stable. The critical value g
(c)
m is determined by

equation:

1

g
(c)
m

=

∫ 1

−1

1− cos2 θ

2
d cos θ

∫ Λ2

θ

4∆2

θ

dt
1

4π2v3F

t− 4∆2
θ + 4v2Fk

2
F

√

t− 4∆2
θ

√
t

4∆2
θ

t
=

2k2F
3π2vF

. (26)

At this critical value of gm the energy gap Ev,L=1,S=0 is close to zero. We get

−1/gm + 1/g(c)m =
2k2F
π2vF

∫ 1

−1

1− x2

2
dx

∫ ∞

1

dz
1√

z2 − 1

w2 + x2

x2z2 + w2
, w = − iEu,L=1,S=0

2∆
(27)

and

−1/gm + 1/g(c)m =
2k2F
π2vF

∫ 1

−1

1− x2

2
dx

∫ ∞

1

dz
1√

z2 − 1

w2

x2z2 + w2
, w = − iEv,L=1,S=0

2∆
. (28)
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The integration gives correspondingly

0 = 1/gm − 1/g(c)m +
4k2F
π2vF

[ 1

16
w4

√
π
( 1

4w
π3/2 − 16

15
√
π
F

1/2,1,2
3/2,7/2(−w2)

)

+

+
1

16
w4

√
π
( 1

w
π3/2 − 8

3
√
π
F

1/2,1,1
3/2,5/2(−w2)

)

− 1

6
w2 +

1

3

]

(29)

for the u-mode and

0 = 1/gm − 1/g(c)m +
4k2F
π2vF

[1

8
w4√π

( 1

2w
π3/2 − 8

3
√
π
F

1/2,1,2
3/2,5/2(−w2)

)

+

+
1

8
w4√π

( 1

w
π3/2 − 4√

π
F

1/2,1,1
3/2,3/2(−w2)

)

− 1

2
w2

]

(30)

for the v-mode.
It appears, that for 1/g

(c)
m > 0 > 1/gm the first equation has the solution for real value of w and imaginary value of

Eu,L=1,S=0. For 0 = 1/gm the solution with Eu,L=1,S=0 = 0 appears, while for 0 < 1/gm there are no solutions of this
equation in the physical region of ω. (For Imω = 0 the physical region is Reω ≥ 0.)

The second equation for 1/gm < 1/g
(c)
m has the solution with real w and pure imaginary Ev,L=1,S=0, as it was pointed

out above. For 1/g
(c)
m = 1/gm the solution with Ev,L=1,S=0 = 0 appears, while for 1/g

(c)
m < 1/gm there is the solution with

real negative w. It does not represent any solution of the original equation given by the integral and therefore belongs to
the unphysical region of w.

This situation is illustrated by Fig. 2, where the absolute value of the right hand side of Eq. (30) in the units of
4k2

F

π2vF
is

Figure 2: The absolute value of the right hand side of Eq. (30) in the units of
4k2

F

π2vF
is represented as a function of w = A+iB

for 1/g − 1/gm = −0.2
4k2

F

π2vF

represented as a function of w = A+ iB for 1/gm − 1/g
(c)
m = −0.2

4k2

F

π2vF
. One can see, that there is the solution at Imω = 0,

Reω > 0. It corresponds to the pure imaginary energy gap, and indicates the instability of vacuum. When the value of
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1/gm− 1/g
(c)
m is increased, the solution approaches zero. At 1/gm− 1/g

(c)
m > 0 the solution of Eq. (30) exists at real negative

values of ω that are not physical because they do not correspond to any solutions of Eq. (28).
L = 1, S = 1. We take components with α = 1, 3; i = 1, 2. It appears, that here the equations for the determinations of

the gaps are the same as for L = 1, S − 0 with the modes u and v exchanged. We come to

Eu,S=1,L=1 = Ev,S=0,L=1, Ev,S=1,L=1 = Eu,S=0,L=1. (31)

One can see, that in the channels with L = 0, where the gaps of the order of ∆ appear, these gaps satisfy the Nambu
sum rule

E2
u + E2

v = 4〈∆2
θ〉 =

12

5
∆2.

We come to the conclusion, that vacuum becomes stable for gm < g
(c)
m , but the Higgs modes in the channels with L = 1

do not exist.
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