Supplemental Material for

“Fermi points and the Nambu sum rule in the polar phase of *He”

1. “Gap” equation for the polar phase with the spin-orbit interaction taken into account. In the presence
of spin-orbit interactions we consider the condensate of the form
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with || < 1. The gap equation receives the form
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(It is taken into account that (d) = 0.) We may rewrite this equation as follows
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Here the energy cutoff Ay and the momentum cutoff K are related by expression A2/4 = v2K? + A2 (integration is over
momenta with |k — kr| < K). We keep the terms linear in gp and x**. Here
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2. Bosonic collectlve modes in the polar phase. Let us calculate the energy gaps of the bosonic collective modes. In
our calculation for simplicity we neglect spin-orbit interaction. The quadratic part of the effective action for the fluctuations
around the condensate has the form:

with @ = 3UET° 9D and p — vedr’ gp

_ u
St = (@,0)[1/g - Q11 ( . > )
where )
Q01 = — 5%,
gm
while sA 5
1Y + i\
tia(p) = (p) ' p)
and 5 Asa(p) — 6 Aia(~p)
. _ x1e% p 104 p
Via(p) = 57
Here _ Brd
au o € 5. ajic, 5. G50
[H (E)}(ﬂ—l/—@ﬂ_yTrG(e,k)’y VO kiGe — B, k)7 %k (10)
and ‘ Brd
[H“(E)} = _1/ T Gle, k)R Gle — B, k)R (11)
ai (2m)4
The polarization operator can be represented as
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where the spectral function may be calculated using the Cutkosky rule (see the Landau—Lifshitz course of theoretical physics,
vol. 4, chapter 115)
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where k = (sin 6 cos ¢, sin 0 sin ¢, cos ) while E/2 = /2 = e, = e_; ky = kp + 7”52_1)4?", and Ag = A(rky) = Acos. In
the similar way
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3. Energy gaps and the Nambu sum rule. Let us come to the evaluation of the energy gaps.
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L =5 =0. We take components with &« = 2, ¢ = 3. In the v-channel at S = L = 0 the energy gap is equal to zero that
leads to the condition
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Recall that Ay = Acosf while the energy cutoff Ay and the momentum cutoff K are related by expression AZ/4 = v3K? + A2
(integration is over momenta with |k — kr| < K). Actually, Eq. (15) is equivalent to the “gap” equation that relates the value
of A with the coupling constants g, g, and the momentum cutoff . In the similar way
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Let us subtract Eq. (15) from Eq. (16). Assuming that vpkr > vpk > A we have:
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The integrals in this equation may be taken and the result is expressed through the hypergeometric functions:
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Technically we calculate the value of the integral in Eq. (17) at real values of w. Next, the obtained result is to be continued
analytically to the whole complex plane. It is done in the way utilised inside the MAPLE package.
Numerical solution of this equation gives
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This solution is illustrated by Fig.1, where the absolute value of the right hand side of Eq. (18) in the units of fzki is

represented as a function of w = A + iB. One can see, that there is the solution in the physical part of the complex plane
(at Rew < 0, Imw < 0). It corresponds to the energy gap of the given collective mode.

L=0,5=1. We take components with a« = 1,3, 7 = 3.

In the u-channel at L = 0, S = 1 the energy gap is equal to zero that leads to the condition, which coincides with Eq. (15).
In the similar way equation for the v channel gives
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L=1,5=0. We take components with « = 2, ¢ = 1,2. In the u channel
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At E, 1=1,5=0 = 0 we may rewrite this equation in the form with the integration over k instead of integration over ¢:
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One can check that after the integration over 6 the right hand sides of the two expressions Eq. (4) and Eq. (22) coincide.
Therefore, in the absence of the extra interaction that stabilizes direction of 7 in this channel the Goldstone boson appears
as it should.
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Figure 1: The absolute value of the right hand side of Eq. (18) in the units of

—=o— is represented as a function of w = A+iB

In the presence of this extra interaction we have the following equation for the determination of E, -1 s5=0:
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In the v channel we have
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Subtracting the gap equation we may represent this expression as follows
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The value of 1/g,, should be sufficiently large in order to make vacuum stable. The critical value gr(,fb) is determined by
equation:
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At this critical value of g,, the energy gap E, -1 s—0 is close to zero. We get
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The integration gives correspondingly
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for the v-mode.

It appears, that for 1/ gﬁ,‘? > 0 > 1/gm, the first equation has the solution for real value of w and imaginary value of
Ey 1=1,s=0. For 0 = 1/g,, the solution with E, =1 s=0 = 0 appears, while for 0 < 1/g,, there are no solutions of this
equation in the physical region of w. (For Imw = 0 the physical region is Rew > 0.)

The second equation for 1/g,, < 1/ g,(ﬁ) has the solution with real w and pure imaginary F, -1 s—o, as it was pointed

out above. For 1/g§,§) = 1/gm the solution with E, 1—1,s=0 = 0 appears, while for 1/g£nc) < 1/gm there is the solution with

real negative w. It does not represent any solution of the original equation given by the integral and therefore belongs to
the unphysical region of w.
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This situation is illustrated by Fig.2, where the absolute value of the right hand side of Eq. (30) in the units of is
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Figure 2: The absolute value of the right hand side of Eq. (30) in the units of is represented as a function of w = A+1iB

for1/g—1/gm = —0.2
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represented as a function of w = A+ 1B for 1/g,, — 1/g§,§) = —0.2:2]6—;. One can see, that there is the solution at Imw = 0,
Rew > 0. It corresponds to the pure imaginary energy gap, and indicates the instability of vacuum. When the value of



1/gm — 1/97(7? is increased, the solution approaches zero. At 1/g.,, — 1/97(7? > 0 the solution of Eq. (30) exists at real negative
values of w that are not physical because they do not correspond to any solutions of Eq. (28).

L=1,5=1. We take components with o = 1,3; ¢ = 1,2. It appears, that here the equations for the determinations of
the gaps are the same as for L = 1,5 — 0 with the modes u and v exchanged. We come to

Eus=1,1=1 = Ey s=0,1=1, Fus=1,1=1 = Fus5=0,=1- (31)

One can see, that in the channels with L = 0, where the gaps of the order of A appear, these gaps satisfy the Nambu
sum rule

12
B2+ B2 = 4(A}) = gAZ‘.

We come to the conclusion, that vacuum becomes stable for g,, < g,(,i), but the Higgs modes in the channels with L =1
do not exist.



