Supplemental material to the article "Evolution of scattering patterns for dielectric metasurfaces"

We define the structure factor as a sum [1]:

$$
\begin{equation*}
S(\mathbf{q})=\sum_{j} \exp \left(i \mathbf{r}_{j} \mathbf{q}\right) \tag{1}
\end{equation*}
$$

where $\mathbf{q}=\mathbf{k}_{i}-\mathbf{k}_{s}$ is the scattering vector, \mathbf{k}_{i} and \mathbf{k}_{s} are the incident and scattering wave vectors, and r_{j} is a scatterer position. In many systems scattering intensity can be evaluated by $|S(\mathbf{q})|^{2}$. Below we analyze several types of scatterer distributions and calculate their structure factors.

1. Linear chain

We start from the simplest structure that is a chain of N scatterers laying along an axis a hexagon. The scatterer position is defined by $r_{j}=n \mathbf{a}$, where n is non-negative integer less than N. The sum in (1) can be evaluated as [1]

$$
\begin{equation*}
\sum_{n=0}^{N-1} \exp (\mathrm{i} n x)=\frac{\sin (N x / 2)}{\sin (x / 2)} \exp (\mathrm{i}(N-1) x / 2) \tag{2}
\end{equation*}
$$

The scattering pattern of the chain is represented by a number of cones being coaxial with a. For the case of normal incidence one of the cones degenerates into a plane.

2. Parallelogram structure

Let the scatterers positions are defined by $r_{j}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}$, where \mathbf{a}_{1} and \mathbf{a}_{2} are lattice vectors, and n_{1} and n_{2} are non-negative integers less than N_{1} and N_{2}. The scatterers are bounded by a parallelogram and taking into account (2) the scattering factor can expressed as

$$
\begin{equation*}
S(\mathbf{q})=\frac{\sin \left(N_{1} \mathbf{q} \mathbf{a}_{1} / 2\right)}{\sin \left(\mathbf{q} \mathbf{a}_{1} / 2\right)} \frac{\sin \left(N_{2} \mathbf{q} \mathbf{a}_{2} / 2\right)}{\sin \left(\mathbf{q} \mathbf{a}_{2} / 2\right)} \exp \left(i \mathbf{q} \frac{\left(N_{1}-1\right) \mathbf{a}_{1}+\left(N_{2}-1\right) \mathbf{a}_{2}}{2}\right) \tag{3}
\end{equation*}
$$

The scattering pattern is obtained by a product of two scattering factors for chains along \mathbf{a}_{1} and \mathbf{a}_{2}. The direction at which the cones intersect each other a strong scattering maximum to appear.

3. Hexagonal structure

Now we consider the scatters arranged in the hexagonal lattice and bounded by a hexagon. If N is even number we splits the hexagons into 3 parallelograms and evaluate $S(\mathbf{q})$ as a sum of three parallelogram structure factors (3) as

$$
\begin{equation*}
S(\mathbf{q})=S_{12}(\mathbf{q}) \exp \left(\frac{\mathrm{iq} \mathbf{a}_{1}}{2}\right)+S_{23}(\mathbf{q}) \exp \left(-\frac{\mathrm{iq} \mathbf{a}_{1}}{2}\right)+S_{31}(\mathbf{q}) \exp \left(\frac{\mathrm{iq}\left(\mathbf{a}_{3}-\mathbf{a}_{2}\right)}{2}\right) \tag{4}
\end{equation*}
$$

Next we analyze the scattering pattern along vertical plane. We assume the sample is illuminated normally $\mathbf{k}_{i}=(0,0, k)$ and the scattering wave vector is $\mathbf{k}_{s}=(0, k \sin \varphi, k \cos \varphi)$. By introducing $\zeta=(k \sqrt{3} a \sin \varphi) / 4$ the scattering factor for the hexagonal samples in the vertical plane is approximated by

$$
\begin{equation*}
|S(\mathbf{q})|^{2} \approx N^{2} \frac{\sin ^{2}(2 N \zeta)}{\sin ^{2}(\zeta)} \tag{5}
\end{equation*}
$$

4. Graphene-type structure

In this section we discuss scattering from graphene-type samples. To evaluate the structure factor we summarize six parallelogram' structure factors (3)

$$
\begin{equation*}
S(\mathbf{q})=S_{12}(\mathbf{q})\left\{e^{i \mathbf{q} \frac{\mathbf{a}_{1}-\mathbf{a}_{3}}{3}}+e^{i \mathbf{q} \frac{\mathbf{a}_{2}-\mathbf{a}_{3}}{3}}\right\}+S_{23}(\mathbf{q})\left\{e^{i \mathbf{q} \frac{\mathbf{a}_{2}-\mathbf{a}_{1}}{3}}+e^{i \mathbf{q} \frac{\mathbf{a}_{3}-\mathbf{a}_{1}}{3}}\right\}+S_{31}(\mathbf{q})\left\{e^{i \mathbf{q} \frac{\mathbf{a}_{3}-\mathbf{a}_{2}}{3}}+e^{i \mathbf{q} \frac{\mathbf{a}_{1}-\mathbf{a}_{2}}{3}}\right\} \tag{6}
\end{equation*}
$$

Now we evaluate the structure factor for scattering into the vertical plane, which read

$$
\begin{equation*}
S(\mathbf{q})=N \frac{\sin (N \zeta)}{\sin (\zeta)} e^{-\mathrm{i}(N-1) \zeta}\left\{e^{-\frac{2 i \zeta}{3}}+e^{-\frac{4 i \zeta}{3}}\right\}+\frac{\sin ^{2}(N \zeta)}{\sin ^{2}(\zeta)}\left\{e^{-\frac{2 i \zeta}{3}}+e^{\frac{2 i \zeta}{3}}\right\}+N \frac{\sin (N \zeta)}{\sin (\zeta)} e^{\mathrm{i}(N-1) \zeta}\left\{e^{\frac{4 i \zeta}{3}}+e^{\frac{2 i \zeta}{3}}\right\} \tag{7}
\end{equation*}
$$

After simplification this formula has a form

$$
\begin{equation*}
S(\mathbf{q})=\frac{\sin (N \zeta)}{\sin (\zeta)}\left(4 N \cos (N \zeta) \cos \left(\frac{\zeta}{3}\right)+2 \frac{\sin (N \zeta)}{\sin (\zeta)} \cos \left(\frac{2 \zeta}{3}\right)\right) \tag{8}
\end{equation*}
$$

The second term of sum is negligible, hence the resulting formula for the structure factor read

$$
\begin{equation*}
S(\mathbf{q}) \approx 2 N \frac{\sin (2 N \zeta)}{\sin (\zeta)} \cos (\zeta / 3) \tag{9}
\end{equation*}
$$

This expression resembles one for the hexagonal samples (5) but it has an additional factor $\cos (\zeta / 3)$, which is responsible to the gap formation in the arcs being observed in the graphene diffraction patterns.

References

[1] A. Guinier. X-Ray Diffraction. In Crystals, Imperfect Crystals, and Amorphous Bodies, W.H. Freeman and Co, San Francisco and London (1963).

