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1. Experimental constraints imposed on non-local transport. In
this supplement, we focus on the universal exhibition of topological order in the
transport properties of ideal two-dimensional topological insulators in the most
straightforward and representative form. The study of the transport charac-
teristics of the so-called ideal topological insulator SmB6 revealed that in the
three-dimensional case the transport properties significantly depend on the ge-
ometry of samples and terminal assignments. A deviation from the universal
behaviour takes place also in two-dimensional systems. It occurs due to metal
droplets inside real contacts. This phenomenon can be described in terms of an
additional terminal. The effect of this and other factors such as the finite width
of the terminal, reflections from the internal interfaces, and other conditions on
amplitudes of the transitions between current and voltage terminals was studied
in several papers.

Let us clarify the role played by the contacts in the edge-state transport.
First of all, we note that a contact is not a time-reversal symmetry- break-
ing potential that mixes counter-propagating edge states with opposite spins.
Contacts are finally an electron degree of freedom reservoir that incoherently
populates both edge-state channels. An ideal contact populates both edge-state
channels with equal weight by injecting spin-up and spin-down electrons with
equal probability. This is the origin of the additional resistance produced by the
contacts. A contribution of such a dephasing reservoir into an additional longi-
tudinal resistance can be negligible under the condition L < Lc ∼ 1/η. Here L
is the characteristic linear size of a contact, Lc is the dephasing length, and η is
the dephasing strength of the self-energy part. Note that the self-energy should
not break the time-reversal symmetry. Decoherent behaviour arises due to the
existence of the dephasing reservoir with the distribution function included in
the so-called lesser self-energy of the leads.

However, there are sharp dips in the conductance even for small values of
ηL. They can be strong enough to completely block coherent transport at one
of the edges. Therefore, even a small dephasing region can equally affect a probe
terminal. The experimental value of the maximal resistance for the six-terminal
device is 1/7 instead of the theoretical prediction 1/6. Such a result is consistent
with the existence of the additional dephasing region. Dephasing regions can
also exist due to an inhomogeneity of the sample. The experimental results
have shown that a change in the gate voltage also affects the homogeneity of
the device due to trap state charging at the semiconductor-insulator interface.
This leads to an inhomogeneous potential in the gated area and to the creation
of the metallic islands that exist when most of the gated regions are insulating
ones.

There are two different methods to suppress the non-local transport. The
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first approach is to make the device scale sufficiently small so as to induce
backscattering in the channels of the edge states. Backscattering occurs when
the wave functions for opposite spin orientations overlap. This happens for a
device width of about 200 nm. Therefore, if the width W1 of the central de-
vice strip is rather large, the deviation T

′

1N from the ideal value T1N = 1 is
negligibly small. The same condition W > W1 for the absence of the tunneling
between the edges of the individual terminal is valid for the terminal width
W1. Measurements of the non-local resistance in devices when they are in the
quantum spin Hall effect states show the values expected for the nonperturba-
tive non-local edge-state transport. The numerical simulations of the scattering
matrix at the metal–topological insulator interface has confirmed the negligibly
small value of T

′

1N for the employed samples. The second method to suppress
the edge-state contribution to non-local transport is to choose non-local config-
urations that imply the edge channel transport over distances longer than the
inelastic scattering length. This means that the maximal number of terminals
N < Nc = L1/(W1+L2) can be roughly estimated as 10 for the real experimen-
tal parameters. Here L1 is the characteristic sample size and L2 is the distance
between terminals.

2. Figures 1–3 to the section “The density of surface states” of the

main text.

Figure 1: The spectrum of surface states in Weyl semimetal. The point denotes
kx = ky = 0

3. Spin-orbit interaction in two-dimensional electron gas. We have
recently studied a two-dimensional electron gas in a semiconductor heterojunc-
tion with lateral superlattice subject to a constant uniform magnetic field per-
pendicular to the two-dimensional plane. A typical schematic diagram of this
structure is shown in Fig. 4. Spin-orbit coupling (SOC) is included in theory as
Rashba and Dresselhaus terms. The magnitude of the magnetic field is chosen to
correspond to a rational number of magnetic flux per unit cell of the superlattice.
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Figure 2: Fermi arcs at ε = 0.1

Figure 3: The density of surface states n(ε) vs. the energy ε in Weyl semimetal

Model calculations are carried out in the range of experimental parameters of
the system when spin, spin-orbit splitting, and splitting associated with periodic
potential action on an electron are comparable. Modern artificial semiconduc-
tor superlattices are created by epitaxial growth and high-performance electron
lithography. In such structures, the electron free path is much longer than the
superlattice period which is of the order of tens of nanometers.

The model electron Hamiltonian can be written in the form Ĥ = Ĥ0 +
V (x, y), where

Ĥ0 = (p̂− eA/c)2/2m⋆ + ĤSOI − gµBHσ̂z , (1)

and the two-periodic function V (x, y) simulates the interaction between an elec-
tron and the electrostatic field of the superlattice. Note that we considered dif-
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Figure 4: Schematic of a semiconductor heterojunction with a surface superlat-
tice placed in the perpendicular magnetic field H

ferent cases of periodic potentials with an inversion center and without inversion
symmetry. In Eq. (1), p̂ is the momentum operator, m⋆ is the electron effective
mass, σ̂z is the Pauli matrix, µB is the Bohr magneton, g is the Lande factor,

ĤSOI is the spin-orbit coupling Hamiltonian. Since the typical superlattice pe-
riod of tens of nanometers is hundred times larger than the crystal period, we
use the isotropic effective mass approximation at Γ-point.

In our model, the energy spectrum of an electron moving in a non-
centrosymmetric potential in the presence of a perpendicular magnetic field and
Rashba SOC is calculated. It is shown that for a centrosymmetric sign-constant
potential, energy subbands form pairs on a certain side of non-perturbed lev-
els. Symmetry of dispersion laws has been examined. It is shown that at a
qualitative level, the photovoltaic effect can occur in the studied structures for
direct transitions between states of magnetic subbands both in one pair of levels
and for transitions between energy subbands of different pairs of levels with a
quantum energy of the order of h̄ωc. Here, ωc is the cyclotron frequency. This
effect is due to inversion asymmetry of the periodic potential of the superlattice.

The calculation of average values of electron spin projections in states of
magnetic subbands in centrosymmetric and non-centrosymmetric model poten-
tials of the superlattice has revealed the vortex nature of the spin distribution
in the plane of the electron gas. In the case of a centrosymmetric potential,
spin magnetization of the electron gas in a completely filled subband is zero.
The controllable effect of non-zero spin magnetization in the plane perpendicu-
lar to the magnetic field arises because of the absence of inversion symmetry of
the periodic electrostatic field of the superlattice in the presence of spin-orbit
interaction in the electron gas.

The magneto-optical Kerr and Faraday effects for direct transitions between
completely filled ground subband and the next magnetic subband related to
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the ground spin-split Landau level are considered. The Rashba SOC in the
electron gas is used. Complex Faraday and Kerr angles are calculated by the
formulas obtained for a thin film of thickness d ≪ λ (λ is the incident radiation
wavelength) deposited on a GaAs substrate with the static refractive index ns:

θF =
σxy

σxx

[

1 +
1

Z+σxx

]−1

, (2)

θK =
σxy

σ2
xx

(−2c/d)
[(

1 +
1

Z+σxx

)(

1 +
1

Z−σxx

)]−1

, (3)

where Z± = d/[c(ns ± 1)], c is the light velocity, σij is the conductivity tensor.
The value d = 10−5 cm corresponds to the typical thickness of a two-dimensional
electron gas layer.

Fig. 5 shows the frequency dependence of the rotation angle of the
polarization plane of the transmitted wave in the Faraday effect for transitions

Figure 5: Frequency dependence of the Faraday angle for transitions be-
tween ground and next magnetic subbabnds in the electron spectrum of the
In0.23Ga0.77As/GaAs structure

from a ground magnetic subband to the next higher energy magnetic subband.
The angle θF caused by electromagnetic wave absorption in one layer of the
two-dimensional electron gas does not exceed a microradian. Note some specific
features of the dependence θF(ν). We have found that peak 1 in Fig. 5 is deter-
mined by the Van Hove singularity of combined density of states in magnetic
subbands. Peak 2 near the absorption edge arises only due to the spin-orbit
interaction in the electron gas. The frequency of this peak corresponds to the
values of the electron quasi-momentum k in the Brillouin magnetic zone for
which z-projections of spin polarization of stationary states in the considered
magnetic subbands are equal (see Fig. 6). At the frequency of this peak, the
Faraday radiation ellipticity changes its sign.
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Figure 6: Spin polarization of stationary quantum electronic states in the mag-
netic Brillouin zone in the ground (µ = 1) and next (µ = 2) magnetic subbands
of the spectrum. Lines of intersection of surfaces in the k-space in which electron
states correspond to peak 2 in Fig. 2 are shown

Our calculations show that maxima of Kerr and Faraday rotation angles
mainly correspond to the frequency intervals in which the longitudinal compo-
nent σxx of the conductivity tensor is small, while the non-diagonal component
σxy is finite, i.e., for samples in the insulator regime when external radiation
induces only transverse current. The allowance for only spin splitting in the
magnetic field cannot explain these features of the frequency dependences of
Faraday and Kerr angles in the analysis of possible experiments with the elec-
tron gas. Therefore, along with the magnetic field, the spin-orbit interaction
essentially determines the value of the circular dichroism in the lattice struc-
tures. Note that our model calculations of the magneto-optic effects in the
electron gas with Dresselhaus SOC reveal qualitatively the same features of the
frequency dependences of Kerr and Faraday angles.
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