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The problem of finding of the localized magnetic moments (LMM) contribution, which appears in SmB6 for T < T ∗, is
reduced to subtraction of Pauli contribution from the total magnetization

MLMM(B, T ) = M(B, T )−MPauli(B, T ), (S1)

where MPauli(B, T ) contains both linear and non-linear parts. When the correction for the density of states ∆ρ(B, T ) caused
by renormalization is accounted apart constant value χ1 = χ10 in Eq. (2), Pauli magnetic susceptibility acquires the form
χ1(B, T ) = χ10 +∆ρ(B, T )µ2

B
and the derivative of the magnetic moment will be given by

∂MLMM/∂B = ∂M/∂B − ∂MPauli/∂B = ∂M/∂B − (χ10 +∆ρ0(B, t) · (1 + ∂ ln∆ρ0/∂ lnB)µ2

B). (S2)

Here parameter χ10 describes linear part of Pauli magnetization and the term ∆ρ0(B, T ) · (1 + ∂ ln∆ρ0/∂ lnB)µ2

B
describes

non-linear part. The “baseline” ∂MPauli/∂B can be found from experiment for T > T ∗ (region II in Fig. 2b of the main
text), where B0(T ) = const and contribution of LMM is missing. In the diapason T < T ∗, the function ∂MPauli/∂B may
be obtained by extrapolation. As long as χ10 does not depend on temperature and non-linear part of ∂MPauli/∂B may be
well described by equation MsPauli(T )/B0 cosh

2(B/B0), it is sufficient to set dependence MsPauli(T ) in the diapason T < T ∗

and use temperature independent values of χ10 and B0 corresponding to the range T > T ∗. The linear extrapolation and
second order polynomial extrapolation for the MsPauli(T ) function were probed (curves 1 and 2 in Fig. 2b of the main text).
Finding of the LMM contribution in accordance with the described procedure is illustrated by Fig. 1S. After subtraction from
initial ∂M/∂B dependence (Fig. 1S, a, curve 1) of the extrapolated curve ∂MPauli/∂B (Fig. 1S, a, curve 2), the derivative
∂MLMM/∂B may be obtained (Fig. 1S, b).

Fig. 1S. Subtraction of the localized magnetic moments contribution taking field dependence ∂M/∂B for T = 3K as an example. (a) –
1 – initial ∂M/∂B data, 2 – ∂MPauli/∂B approximation. (b) – Demonstrate difference curve ∂MLMM/∂B = ∂M/∂B − ∂MPauli/∂B
and its approximation with the help of Eq. (S3)
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After that, the field dependence ∂MLMM/∂B was described by equation

∂MLMM

∂B
=

MsLMM

B0LMM

(

[

1

2J sinh(B/2J · B0LMM)

]2

−

[

(1 + 1/2J)

sinh((1 + 1/2J)B/B0LMM)

]2
)

, (S3)

which corresponds to Brillouin function with a quantum number J . If the J value is fixed, the problem is reduced to two-parameter
fitting with MsLMM and B0LMM (an example for the case J = 1/2 is shown in Fig. 1S, b by smooth line).

In order to find temperature dependences MsLMM(T ) and B0LMM(T ), the data ∂MLMM/∂B were additionally smoothed for each
fixed temperature and then were fitted with the help of Eq. (S3). It is found that the shape of the best fit curved is practically
independent of the J choice from the set J = 1/2, J = 3/2, and J = 5/2 (Fig. 2S, a). The obtained parameters MsLMM(T ) and
B0LMM(T ) were used for plotting of the LMM magnetization field dependences (Fig. 2S, b). It is visible that in the resonance field Bres

corresponding to the data of [11] the saturation of the MLMM(B, T ) field dependences is almost reached (Fig. 2S, b).

Fig. 2S. Curves ∂MLMM/∂B, describing contribution of the paramagnetic centers to SmB6 magnetization at different temperatures (a)
and corresponding field dependences of magnetization MLMM(B) (b). In the panel (a) smooth curves are the best fits to experimental
data, which were used for calculation of the MLMM(B) dependences in the panel (b). Experimental data and their approximations
in the panel (a) are artificially shifted by fixed step 0.2 · 10−3µB/T for clarity. Dashed line denotes the field Bres, where magnetic
resonance in SmB6 was observed (see reference [11] of the main text)

We wish to mark that for any J the B0LMM temperature dependence followed linear law B0LMM(T ) ∼ θ(T ) = T −T0 within fitting
errors. Temperature dependences B0LMM(T ) were used for calculation of the effective magnetic moments µ∗ for the different choices
of J and extrapolation type for MsPauli(T ). The result was weakly sensitive to extrapolation function used and was mainly controlled
by the quantum number J . It follows from the Table 1 that big µ∗

∼ (7−14)µB may be expected for SmB6.

Now let us consider an estimate of the localized magnetic moments concentration N(T ). To get a higher estimate, one needs to
consider linear extrapolation of MsPauli(T ) because in this case the contribution to magnetization from LMM is enhanced (Fig. 2b of the
main text). As long as in SmB6 the dependence B0LMM(T ) is temperature linear the condition µ∗(T ) = const holds and, consequently,
the observed temperature dependence Ms(T ) = N(T )µ∗ is caused by increase of LMM concentration with lowering temperature. The
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Table 1. Effective magnetic moment, LMM saturated magnetization per Sm ion and concentration of the localized magnetic moments in SmB6

J µ∗/µB MsLMM/µB , T = 2.5K N/NSm, T = 2.5K
1/2 6.6± 0.1 (0.30± 0.05) · 10−3 4.5 · 10−5(2 · 10−3)
3/2 11.8± 0.2 (0.31± 0.06) · 10−3 2.6 · 10−5(4 · 10−4)
5/2 13.9± 0.3 (0.31± 0.06) · 10−3 2.2 · 10−5(2 · 10−4)

data Ms and µ∗ suggest that this concentration is low and, even for T = 2.5K, does not exceed (2.2−4.5) · 10−5 of samarium ions
concentration (see last column of the Table 1). This value is, apparently, much less than the concentration of Sm3+ ions NSm(3+),
which number is about half of the total number of samarium ions (see [6] of the main text). If localized magnetic moments in SmB6 are
identified with spin-polaron states, it is necessary to take into account the renormalization of MsLMM ([19] of the main text). This will
result in enhancement of expected LMM concentration by the factor 9–40 (see figures in brackets in the last column of the Table 1).
However, even in the latter case N(T ) ≪ NSm(3+).
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