Supplemental Material to the article

"Thermodynamics of the Symmetric Spin-orbital Model: One- and Two-dimensional Cases"

1. Expressions for Green's functions

Spin-spin and spin-pseudospin retarded Green's functions are.

$$G_{\mathbf{q}} = \left\langle S_{\mathbf{q}}^z \mid S_{-\mathbf{q}}^z \right\rangle_{\omega},\tag{S1}$$

$$R_{\mathbf{q}} = \left\langle T_{\mathbf{q}}^z \mid S_{-\mathbf{q}}^z \right\rangle_{\mathcal{U}}. \tag{S2}$$

Obviously $\langle T^z_{\bf q} \mid T^z_{-{\bf q}} \rangle_{\omega} = \langle S^z_{\bf q} \mid S^z_{-{\bf q}} \rangle_{\omega}$, because we consider symmetric case I=J. Self-consistent spherically symmetric approach leads to the following expressions for $G_{\bf q}$ $R_{\bf q}$:

$$G_q = \frac{F_{\rm ac}(\mathbf{q})}{\omega^2 - \omega_{\rm ac}^2(\mathbf{q})} + \frac{F_{\rm opt}(\mathbf{q})}{\omega^2 - \omega_{\rm opt}^2(\mathbf{q})},\tag{S3}$$

$$R_{\mathbf{q}} = \frac{F_{\mathrm{ac}}(\mathbf{q})}{\omega^2 - \omega_{\mathrm{ac}}^2(\mathbf{q})} - \frac{F_{\mathrm{opt}}(\mathbf{q})}{\omega^2 - \omega_{\mathrm{opt}}^2(\mathbf{q})}.$$
 (S4)

2D case. The numerators for acoustic and optical branches are

$$F_{\rm ac} = \frac{F_1 + F_2}{2}, \ F_{\rm opt} = \frac{F_1 - F_2}{2},$$
 (S5)

$$F_1 = -8Jc_0(1 - \gamma_{\mathbf{q}}) - Mm_0, \ F_2 = Mm_0, \tag{S6}$$

and the excitations spectra

$$\omega_{\rm ac}^2(\mathbf{q}) = W_1 + W_2, \ \omega_{\rm opt}^2(\mathbf{q}) = W_1 - W_2,$$
 (S7)

$$W_{1} = 2J^{2}(1-\gamma_{\mathbf{q}})\left\{1+4\left[\widetilde{c}_{2g}+2\widetilde{c}_{d}-\widetilde{c}_{g}(1+4\gamma_{\mathbf{q}})\right]\right\}+$$

$$+4JM(2\widetilde{m}_{g}-\widetilde{m}_{g}\gamma_{\mathbf{q}}-\widetilde{m}_{0}\gamma_{\mathbf{q}})+\frac{1}{8}M^{2},$$
(S8)

$$W_2 = -4JM \left[\tilde{c}_g (1 - \gamma_{\mathbf{q}}) + \tilde{m}_g - \tilde{m}_0 \gamma_{\mathbf{q}} \right] - \frac{1}{8} M^2, \tag{S9}$$

here $c_r = \langle \widehat{S}_{\mathbf{i}}^z \widehat{S}_{\mathbf{i}+\mathbf{r}}^z \rangle$, r = g, d, 2g are spin-spin correlation functions, respectively for first (side of the square) $c_g \equiv c_1$, second (diagonal) $c_d \equiv c_2$ and third (doubled side) $c_{2g} \equiv c_3$ nearest neighbors, $\tilde{c}_r = \alpha_r c_r$ are correlation functions with vertex corrections. The lattice sum for square case $\gamma_{\bf q} = \frac{1}{4} \sum_{\bf g} e^{i{\bf q}{\bf g}} = \frac{1}{2} (\cos(q_x) + \cos(q_y))$.

Hereinbefore on-site m_0 and intersite $m_g \equiv m_1$ spin-pseudospin correlation functions are

$$m_0 = \langle S_{\mathbf{i}}^z T_{\mathbf{i}}^z \rangle, \quad m_q = \langle S_{\mathbf{i}}^z T_{\mathbf{i}+\mathbf{g}}^z \rangle,$$
 (S10)

and for the intersubsystem vertex corrections $\widetilde{m}_0 = \alpha_{ST}^0 m_0$, $\widetilde{m}_g = \alpha_{ST}^g m_g$ we adopted the approximation $\alpha_{ST}^0 = \alpha_{ST}^g = 1$. For simplicity we use the notation $M = 8Km_0$.

Note, that the following relations for the symmetrical points $\Gamma = (0,0)$ and $\mathbf{Q} = (\pi,\pi)$ in the Brillouin zone are always fulfilled

$$\omega_{\text{opt}}(\mathbf{\Gamma}) \ge \omega_{\text{ac}}(\mathbf{\Gamma}) = 0, \quad \omega_{\text{ac}}(\mathbf{Q}) \ge \omega_{\text{opt}}(\mathbf{Q}) \ge 0.$$
 (S11)

1D case.

$$F_{\rm ac} = \frac{F_1 + F_2}{2}, \ F_{\rm opt} = \frac{F_1 - F_2}{2},$$
 (S12)

$$F_1 = -4Jc_q(1 - \gamma_q) - Mm_0, \ F_2 = Mm_0$$
 (S13)

$$W_{1} = J^{2}(1 - \gamma_{\mathbf{q}}) \left\{ 1 + 4 \left[\widetilde{c}_{2g} - \widetilde{c}_{g}(1 + 2\gamma_{\mathbf{q}}) \right] \right\} +$$

$$+ 2JM \left(2\widetilde{m}_{g} - \widetilde{m}_{o}\gamma_{\mathbf{q}} - \widetilde{m}_{g}\gamma_{\mathbf{q}} \right) + \frac{1}{8}M^{2},$$
(S14)

$$W_2 = -2JM\left[\widetilde{c}_g(1-\gamma_{\mathbf{q}}) + \widetilde{m}_g - \widetilde{m}_0\gamma_{\mathbf{q}}\right] - \frac{1}{8}M^2, \tag{S15}$$

now $M = 4Km_0$, $\gamma_{\mathbf{q}}$ is one-dimensional, other notations are the same as for 2D case.

2. Three Figures from [1]. In Figures S1, S3 almost invisible nonzero values of m_0 and m_1 just before the transition $(T \gtrsim T_c)$ for Fig. S1 and $K \gtrsim K_c$ for Fig. S3) show the accuracy of the self-consistent calculations.

References

[1] M. Y. Kagan, K. I. Kugel, A. V. Mikheyenkov, and A. F. Barabanov, JETP Lett. 100, 187 (2014).

Fig. S1. (Color online) 2D lattice. Spin-spin and spin-pseudospin correlation functions versus the intersubsystem exchange parameter K for different temperatures. Spin-spin nearest neighbor correlators c_1 – lower solid lines, on-site spin-pseudospin correlators m_0 – upper solid, nearest neighbor spin-pseudospin correlators m_1 – dotted. Different colors correspond to different temperatures. For m_0 and m_1 curves the temperatures are marked on the zero y-axis. For c_1 lines the boundary values of T are indicated (from [1])

Fig. S2. (Color online) 2D lattice. Regions corresponding to zero and nonzero spin-pseudospin correlations. The phase boundary is well fitted by the $T_c = 0.55|K|^{0.55}$ curve (from [1]). Lines with arrows show the paths, along which the results for 2D case are presented (Figs. 1, 2 in Supllemenraty, Figs. 1, 2 in the main text)

Fig. S3. (Color online) 2D lattice. T-dependence of the correlation functions at several fixed K values. As in Fig. 1, spin-spin nearest neighbor correlator c_1 – lower solid lines, on-site spin-pseudospin correlators m_0 – upper solid, nearest neighbor spin-pseudospin correlators m_1 – dotted. Different colors correspond to different K-values. For m_0 and m_1 curves K-values are marked on the zero y-axis. For c_1 lines the boundary K-values are indicated. The curves $|m_0|(T)$ and $m_g(T)$ are well fitted by power law $m \sim (T_c - T)^{\alpha}$ with the exponent $\alpha \sim 0.3 \div 0.5$ nearly independent of K (from [1])