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1. Derivation of Eq. (1) in the Wien approximation for a mixture of noninteracting phosphors that satisfy
the Vavilov law and the Kennard–Stepanov relation. Let us consider a low absorbance solution containing a mixture
of different phosphors that satisfy the Vavilov law and the Kennard–Stepanov relation. The time-resolved excitation-emission
matrix of such a solution can be written as

F (λex, λem, t) = K
∑

i

ciεi(λex)QYiPLi(λem)τ
−1

i e−t/τi , (S1)

where λex is the excitation wavelength, λem is the emission wavelength, t is the time after the excitation pulse, K is a
constant determined by the geometry of the experimental setup for luminescence measurements, i is an index running
over all phosphors in the mixture, ci is the concentration of the ith phosphor, εi(λex) is the extinction coefficient of the ith
phosphor as a function of the excitation wavelength λex, QYi is the fluorescence quantum yield of the ith phosphor, PLi(λem)
is the emission spectrum of the ith phosphor, normalized to unit area, τi is the fluorescence lifetime of the ith phosphor.

The emission spectrum of the ith phosphor is related to its absorption spectrum by the Kennard–Stepanov relation:

PLi(λem) ∝ λ−4

em exp

(

−hc

λemkBT

)

εi(λem), (S2)

where kB is the Boltzmann constant, T is the absolute temperature. Since we assume that the spectra PLi(λem) are
normalized to unit area, it follows from (S2) that

PLi(λem) =
λ−4
em

exp
(

−hc
λemkBT

)

εi(λem)

∞
∫

0

λ−4 exp
(

−hc
λkBT

)

εi(λ)dλ

. (S3)

By substituting (S3) into (S1), we obtain

λ4

em
exp

(

hc

λemkBT

)

F (λex, λem, t) = K
∑

i

ciQYiτ
−1

i e−t/τiεi(λex)εi(λem)
∞
∫

0

λ−4 exp
(

−hc
λkBT

)

εi(λ)dλ

. (S4)

Since the right-hand side of Eq. (S4) is invariant under interchange of λex and λem, the left-hand side of Eq. (S4) must also
be invariant under interchange of λex and λem, which proves Eq. (1) in the Wien approximation:

λ4

em
exp

(

hc

λemkBT

)

F (λex, λem, t) = λ4

ex
exp

(

hc

λexkBT

)

F (λem, λex, t). (S5)

2. Derivation of Equation (1) in the Wien approximation for a cluster of luminescent particles that satisfy
the Vavilov law and the Kennard–Stepanov relation, taking into account the Förster resonance energy
transfer (FRET). Let us consider a cluster of N luminescent motionless particles in a medium with refractive index n at
absolute temperature T . Let the sizes of the particles be small compared to the distances Rij between them. Let the particles
obey the Kennard–Stepanov relation and the Vavilov law. Let the ith particle be characterized by the fluorescence lifetime
τi, by the fluorescence quantum yield QYi, by the wavelength dependence of the absorption cross section σi(λex), and by
the emission spectrum PLi(λem) normalized to unit area. These characteristics are assumed to be given for particles outside
the cluster. Let the Förster resonance energy transfer occur between the particles in the cluster and the rate constants of
the process be given by the Forster equation:

kij =
9κ2

ijQYi

128π5n4τiR
6

ij

∞
∫

0

PLi(λ)σj(λ)λ
4dλ, (S6)
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where kij is the rate constant of transfer from the ith particle to the jth particle (i 6= j), κij is the orientation factor, whose
mean square is equal to 2/3 for the case of free rotation. For i = j, we formally put kij = 0.

The emission spectrum in (S6) can be expressed through the absorption cross section using the Kennard–Stepanov
relation:

PLi(λem) =
λ−4
emσi(λem) exp

(

−hc
λemkBT

)

∞
∫

0

λ−4σi(λ) exp
(

−hc
λkBT

)

dλ

. (S7)

By substituting (S7) into (S6), we obtain
kij = aibij , (S8)

where

ai =
QYi

τi

∞
∫

0

λ−4σi(λ) exp
(

−hc
λkBT

)

dλ

, (S9)

bij =
9κ2

ij

128π5n4R6
ij

∞
∫

0

σi(λ)σj(λ) exp

(

−hc

λkBT

)

dλ. (S10)

Here we have decomposed the coefficient kij into the factors ai and bij : the former factor depends only on i, the latter factor
is symmetric under interchange of i and j.

Let the probability for the ith particle in the cluster to be in the electronically excited state at time t after the excitation
pulse be pi(t). Then, the migration of the excitation over the cluster is described by the following system of ordinary
differential equations:

d

dt
p(t) = Ap(t), (S11)

where p(t) is the vector consisting of N functions pi(t), A is the N ×N -matrix with elements

Aij = −δij

(

τ−1

i +

N
∑

r=1

kir

)

+ kji, (S12)

where δij is the Kronecker delta, that is, the number equal to zero for i 6= j and equal to unity for i = j. The solution of the
system (S11) can be expressed through the matrix exponential

p(t) = eAtp(0). (S13)

By substituting (S8) into (S12) and rearranging the result, we obtain:

Aij =

(

−δij

(

1

τiai
+

N
∑

r=1

bir

)

+ bji

)

aj . (S14)

It follows from (S14) that the matrix A can be expressed as a product:

A = SD, (S15)

where S is a symmetric matrix with elements

Sij = −δij

(

1

τiai
+

N
∑

r=1

bir

)

+ bji, (S16)

while D is a diagonal matrix with elements
Dij = δijaj. (S17)
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By taking into account the factorization (S15), the matrix exponential in (S13) can be expressed as

eAt =

∞
∑

p=0

Aptp

p!
=

∞
∑

p=0

(SD)ptp

p!
= D−1/2

(

∞
∑

p=0

(D1/2SD1/2)ptp

p!

)

D1/2 = D−1/2 exp(D1/2SD1/2t)D1/2. (S18)

Equation (S18) gives us a representation the matrix exponential of the asymmetric matrix At in terms of the matrix
exponential of the symmetric matrix D1/2SD1/2t. At the same time, it is known that the matrix exponential of a symmetric
matrix is also a symmetric matrix.

Let us define the time-resolved excitation-emission matrix of the cluster F (λex, λem, t) as a response to an instantaneous
excitation pulse carrying a unit photon flux per unit area J , with the light wavelength being λex. In this case, the vector of
probabilities for the particles in the cluster to be in the excited state immediately after such an excitation pulse becomes

p(0) = J~σ(λex), (S19)

where ~σ(λex) is the vector consisting of the quantities σi(λex). The response, in our case, is the probability density of the
distribution function of the emitted photons over the time of emission and the emission wavelength and is equal to

F (λex, λem, t) =

N
∑

i=1

pi(t)PLi(λem)QYiτ
−1

i . (S20)

By substituting (S7) into (S20), simplifying the result with the help of the definition (S9), and resorting to matrix
representation by using (S17), we obtain:

F (λex, λem, t) = λ−4

em exp

(

−hc

λemkBT

)

(D~σ(λem))
Tp(t). (S21)

By substituting (S13), (S18), and (S19) into (S21) and rearranging, we obtain:

λ4

em exp

(

hc

λemkBT

)

F (λex, λem, t) = J~σ(λem)
TD1/2 exp(D1/2SD1/2t)D1/2~σ(λex). (S22)

The product of matrices D1/2 exp(D1/2SD1/2t)D1/2 in the right-hand side of Eq. (S22) is a symmetric matrix. Transposing
the right-hand side of Eq. (S22) interchanges the wavelengths λem and λex. At the same time, the right-hand side of Eq. (S22)
is just a number and therefore is invariant under the transpose. Hence, the right-hand side of Eq. (S22) is symmetric under
interchange of the wavelengths λem and λex. Consequently, the left-hand side of Eq. (S22) is also symmetric under interchange
of the wavelengths λem and λex:

λ4

em exp

(

hc

λemkBT

)

F (λex, λem, t) = λ4

ex exp

(

hc

λexkBT

)

F (λem, λex, t). (S23)

3. Experimental data used for plotting Figure 4. Figures S1, S2, and S3 show the raw experimental data used for
plotting Fig. 4, the fitting of these data, and an illustration of the correction for the noise, the photomultiplier dark count
rate, and the instrument response function (IRF). The table S1 shows the experimental parameters used for measuring the
fluorescence decay kinetics.
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Table S1. Experimental conditions under which the fluorescence decay measurements have been performed

Excitation (nm) / Detection (nm)
550/600 600/550 550/550 600/600

Time between pulses (ns) 400 400 100 100
Acquisition time (s) 442.3 4079.9 3600 3600

Bin width (ps) 8 8 4 4
Excitation attenuation 1 1 0.01 0.01
Detector attenuation 0.5 1 0.1 0.1
Signal rate (s−1) 43780 2050 67390 36470

Excitation bandpass (nm) 5 5 5 5
Detection bandpass (nm) 5 5 5 5

Fig. S1. Experimental fluorescence decay kinetics for excitation at 550 nm and detection at 600 nm (red line), the IRF measured

using a scattering sample at 550 nm (blue line), and the fitting of the decay kinetics (green dashed line) (a). The magnified view of

the same graphs (b). The same graphs, but the experimental decay curve and the IRF are smoothed using a rectangular window of

0.8 ns (c), (d)
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Fig. S2. The same as in Fig. S1, but with excitation at 600 nm and detection at 550 nm

Fig. S3. Raw experimental fluorescence decay kinetics (a). Fitting of the experimental decays by the sum of the decreasing

exponential functions with taking into account the dark count rate and the instrument response function (b). The same decays minus

the dark count rate calculated under the assumption of no lifetimes larger than 200 ns (c). Hypothetical true fluorescence decay curves
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obtained as a result of the fitting (d); they differ from the curves in the previous panel in that the correction for the IRF is made; the

portions of the curves that are statistically not reliable are plotted using dashed lines; the portions of curves were considered to be

unreliable when the relative width of the confidence interval was larger than 10%
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