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1. Graphical analysis of the Eq. (11). On the Fig. S1, the dependency of DW momentum (upper panel) and energy
(lower panel) are plotted according the Eq. (11) of the Letter. Here the values of parameters are the same as on the figures
in the main part of the Letter: ρ = 0.5, and values of the uncompensation parameter ν̄ are ν̄ = 0.2 < νc (red curves),
ν̄ = ν̄c (blue curves), and ν̄ = 1 > ν̄c (dark green curves). Vertical green dash lines at ϕ = ±π/2 border one period of
the dependence E(P ). The values of Pmax and Emax correspond to ϕ = ϕmax, where cos 2ϕmax = −ν̄2/ρ = −(ν/νc)

2. In
the “antiferromagnetic” limit, ν → 0, the value of sin 2ϕmax → 1, both Pmax and Emax diverge, the function E(P ) is not
bounded from above and the ending point of the spectrum E(P ) is not present.

Fig. S1. The dependencies P (ϕ) (upper panel, in units of the period P0) and E(ϕ) (lower panel, in units of E0) for different values of

ν (described in the text)

2. Analysis of the small perturbations on the ground of the domain wall. It is convenient to rewrite the
equations (12) from the Letter through first order differential operators, L+ = −d/dx + tanhx and L− = d/dx + tanhx,

L̂−ψ0 = 0, H = L̂+L̂−, as the following

(H− ω2)f − vGL̂+g = igωG, (1)

(H− ω2 +B cos 2ϕ)g − vGL̂−f = −ifωG.

1



The functions f , g can be present in the following form, f = f0ψ0 + α, g = g0ψ0 + β, with the condition < ψ0, α >= 0
and < ψ0, β >= 0. For definiteness, the value f0 = 1 can be chosen. Here the notation for “scalar product” of the functions,

< f1, f2 >=

∫

f∗

1 f2dx, (2)

is used. Equations for α and β take the form

(H− ω2)α− vGL̂+β − igωGβ = [ω2f0 + iGωg0 + vGg0L̂+]ψ0, (3)

(H− ω2 +B cos 2ϕ)β − vGL̂−α+ iωGα = ψ0[(ω
2 −B)g0 − iGωf0]. (4)

Applying the right product by < ψ0, ... > to the Eq. (3), we obtain the following exact connection between the amplitudes

f0 and g0, f0ω
2 + iωg0 = 0. Here we use the condition < ψ0, L̂+α >=< L̂−ψ0, α >= 0. Thus, the ratio g0/f0 is proportional

to the frequency ω and it is small if ω → 0. Then doing the same operation with the Eq. (4), we can present the frequency
through the matrix element with unknown yet function α

g0(ω
2 −B −G2) + vG < ψ0, L̂−α >= 0. (5)

Thus our goal is to calculate this matrix element. The equations for α, β with use of the above-obtained connection between
f0 and g0 can be present as a set of non-uniform equations,

(H− ω2)α− vGL̂+β − igωGβ = vGg0L̂+ψ0, (6)

(H− ω2 +B cos 2ϕ)β − vGL̂−α+ iωGα+ (7)

+ vG < ψ0, L̂−α > ψ0 = 0.

It is important to note that the only smaller (proportional to ω) amplitude g0 is present in the RHS, and the functions
α, β are proportional to ω. Looking for the instability point, where the value of ω2 change its sign, consider the case of small
ω → 0. In the linear approximation on ω the terms with iωα and iωβ can be neglected in the equations (6) and (7), and the
equation (6) can be present as

L̂+[L̂−α− vGβ − vGg0ψ0] = 0. (8)

The solution of the equation L̂+F (x) = 0 is proportional to coshx; thus, the expression in the square brackets should

equals to zero. Substituting L̂−α = vGβ+ vGg0ψ0 to the equation (7), we obtain the closed equation for the variable β only

(H +B cos 2ϕ− v2G2)β = ψ0(vG− < ψ0, L̂−α >). (9)

Taken the right product of (7) by ψ0, and using the orthogonality condition < ψ0, β >= 0, we obtain the exact formula for

the matrix element in Eq. (5), < ψ0, L̂−α >= vG. Substituting this matrix element to the equation (5), the frequency can
be present as the following

ω2 = (1− v2)G2 +B cos 2ϕ. (10)

Note that the calculations done here are not the perturbation theory on the term vG; the only smallness of ω has been
used. The accounting for the nonzero value of α, which leads to the appearance of the multiplier (1 − v2) before G2, is
significant for the analysis of non-small values of velocity v ≤ c. Using the concrete formulae for B and G [Eq. (13) in the
Letter], we arrive to the desired equation for the frequency, Eq. (14) from the Letter.

3. Forced motion of the DW with accounting for dissipation. The forced dynamics of the DW under an action
of the driving force F of any origin and friction force Fdiss can be described by Newton equation dP/dt = Fdiss + F . If
the driving force is caused by magnetic field, parallel to the easy axis (z – axis), the force F = 2MsHz, it is finite at the
spin compensation point (SCP). The friction force can be found through the dissipative function of the magnet, Q, as the
following, Fdiss(v) = −2Q/v. For the standard Gilbert dissipative function, which is proportional to αG(∂l/∂t)

2, where αG

is phenomenological constant (Gilbert constant), and for the exact solution found in the main part of the Letter, the value
of Q is proportional to the DW energy,

Q = v2
4αGh̄s0
l0

√

1 + ρ sin2 ϕ

1− v2/c2
. (11)
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In the limit case of weak force, the linear dependence of the DW velocity on the driving force can be found, v = µF , where
µ is the DW mobility, µ = l0/(4αGh̄s0). Note that the value of mobility corresponding to the driving field F is independent
on ν, see Fig. S2. Thus even for the case of magnetic field as a driving force, for ν ≪ 1 the mobility is weakly dependent on
the uncompensation parameter ν. This feature agrees well with the data of numerical simulations of low-field regime of DW
dynamics, see the inset on the Fig. 4a of the [18] in the main part of the Letter.

Fig. S2. Schematic dependence of the DW velocity on the driving force for ρ = 0.5 and different values of the parameter Fmax. The

dashed line corresponds to the “antiferromagnetic” limit ν = 0 for the Bloch wall. Here parameter F0 is independent on ν and present

through the value of the maximal force Fmax, F0 = Fmax(ν/νc). Thus the larger values of Fmax/F0 corresponds to smaller values of ν

If the force is growing, the dependence v(F ) becomes more complicated. In the antiferromagnetic limit, ν = 0, the
saturating dependence of the form of v(F ) = µFc/

√

(µF )2 + c2 appears, see Fig. S2. Such dependence is caused by Lorentz-
invariance of the sigma-model for AFM, it has been observed of the DW dynamics in orthoferrites, see Refs. [14, 15] in the
main text. At any finite ν, this Lorentz-invariance is broken, limit velocity vc < c and the value of the dissipative force (11)
is limited from the up, Fdiss(v) ≤ Fmax at v ≤ vc, where Fmax = αGρK/2ν. Here, again, the non-analytical dependence on
the parameters ρ and ν appears. The velocity of this steady-state motion can be written as

v =
µFc

√

(µF )2 + (c2/2)(2 + ρ∓ ρ
√

1− F 2/F 2
max)

, (12)

where signs minus and plus correspond to Bloch and Neel walls. This dependence is plotted on the Fig. S2 for different values
of ν. The discussion of non-stationary motion, which appears at F > Fmax, going beyond the scope of this Letter.
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