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1. Schwinger–Dyson identities. The Equation (2) from the main paper text is a good starting point for

the diagram technique in terms of auxiliary field ϕ. It would then be useful to derive exact identities which relate

its correlation functions to the correlation functions of vortex density.

The arbitrary correlation function is defined as follows:

〈O[δn, ϕ]〉 ≡
∫

DϕTrvO[δn, ϕ]e−S[ϕ,δn]. (1)

Due to the invariance of the integration measure w.r.t. infinitesimal transformations ϕa
r

7→ ϕa
r
+ ǫa

r
, we

immediately obtain:

〈O[δn, ϕ]〉 ≡
∫

DϕTrv

(
O[δn, ϕ] +

∑

r

ǫa
r

[
∂O[δn, ϕ]

∂ϕa
r

−O[δn, ϕ]
∂S[ϕ, δn]

∂ϕa
r

])
e−S[ϕ,δn], (2)

and due to arbitrary value of ǫr, taking also into account the exact form of the action Eq. (2), we immediately

obtain the following identity:

〈
∂O[δn, ϕ]

∂ϕa
r

〉
=

〈
O[δn, ϕ]

∂S[ϕ, δn]

∂ϕa
r

〉
=

〈
O[δn, ϕ]

{
∑

r1

(βĴ)−1
rr1

ϕa
r1

− iδna
r

}〉
. (3)

By picking out various O, we can obtain various useful identities for the correlation functions. In particular,

we have:

O[δn, ϕ] = ϕb
r′
⇒ δabδrr′ =

∑

r1

(βĴ)−1
rr1

〈
ϕa
r1
ϕb
r′

〉
− i
〈
δna

r
ϕb
r′

〉
, (4)

O[δn, ϕ] = iδnb
r′
⇒ 0 =

∑

r1

(βĴ)−1
rr1

i
〈
ϕa
r1
δnb

r′

〉
+
〈
δna

r
δnb

r′

〉
(5)

thus the following identity follows:

〈
δna

r
δnb

r′

〉
= δab(βĴ)

−1
rr′

−
∑

r1,2

(βĴ)−1
rr1

〈
ϕa
r1
ϕb
r2

〉
(βĴ)−1

r2r
′ . (6)

Furthermore one obtains, for the correlation function 〈ϕϕ〉 in the form of Eq. (9):

〈δnδn〉 = Q̂
1 + βĴQ̂

. (7)

It is also worth noting that the local correlation function has then the form
〈
δna

r
δnb

r

〉
= Q̂ − Q̂ĜQ̂, which,

strictly speaking, does not coincide with Q̂; the difference is however parametrically small by an extra 1/W factor.

1.1. Polarizability fluctuations. The same procedure allows one to obtain the following expression for the

four-point correlation function:

〈〈
δna

r1
δnb

r2
δnc

r3
δnd

r4

〉〉
= (βĴ)−1

r1r
′

1

(βĴ)−1
r2r

′

2

(βĴ)−1
r3r

′

3

(βĴ)−1
r4r

′

4

〈〈
ϕa
r
′

1

ϕb
r
′

2

ϕc
r
′

3

ϕd
r
′

4

〉〉
. (8)

In the vicinity of Tc, the mean-field theory predicts the following form of the correlation function
〈〈
Gab
r
Gcd
r′

〉〉
≃〈〈

ϕa
r
ϕb
r
ϕc
r′
ϕd
r′

〉〉
(for |r − r

′| ≫ l, by definition of Ĝ matrix). Using the diagram technique, one can show that

coordinate dependence of the ϕ correlation function can be restored in the limit |r′1 − r
′
2| . l and |r′3 − r

′
4| . l as

follows: 〈〈
ϕa
r
′

1

ϕb
r
′

2

ϕc
r
′

3

ϕd
r
′

4

〉〉
≃ Gaa′

r
′

1
x
Gbb′

r
′

2
x
Gcc′

r
′

3
y
Gdd′

r
′

4
y

〈〈
δQa′b′

x
δQc′d′

y

〉〉
. (9)
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Furthermore, since (βĴ)−1
rr′

Ĝr′x = δrx − Q̂rĜrx and the value of Q̂ contains an extra smallness ∼ 1/W , thus

these sections of diagrams can be replaced by delta-functions:

〈〈
δna

r
δnb

r
δnc

r′
δnd

r′

〉〉
≃
〈〈

Q̂ab
r
Q̂cd

r′

〉〉
. (10)

Finally, the mean-square fluctuations of the polarizability corresponds to the replica component a = c 6= b = d,

which can be symmetrized as follows:

〈δnrδnr′〉2 = lim
n→0

1

n(n− 1)

∑

a 6=b

〈〈
Q̂ab

r
Q̂ab

r′

〉〉
, lim

n→0

1

n(n− 1)
P
aa
bb =

3

2
. (11)

2. Derivation of the Ginzburg–Landau functional. In the main text, the following action for two matrix

fields was derived:

nS[Ĝ, Q̂] =
1

2
Tr(ĜQ̂) +

1

2
Tr ln(1 + βĴQ̂) + βn

∑

r

Fv[Ĝr], (12)

where Fv[Ĝ] is a local free energy of a single-cite problem with the following Hamiltonian:

−βĤv[Ĝ] =
1

2

∑

ab

δna(β2W 2 + Gab)δnb + βµ
∑

a

δna. (13)

In this section we will derive the expansion of this action around the replica-symmetric solution of saddle

point equations in the vicinity of the phase transition. Substituting the expansion Ĝ = Ĝ0+ δĜ and Q̂ = Q̂0+ δQ̂,

the fluctuations of the second term can be expressed as follows:

1

2
δTr ln(1 + βĴQ̂) =

∞∑

k=2

(−1)k+1

2k
Tr(ĜδQ̂)k =

∞∑

k=2

(−1)k+1

2k

Bk

a2k−2
Tr(δQ̂)k (14)

(the latter identity utilizes the replicon condition
∑

a δQab = 0), with the following notation:

Bk =

∫
(dq)Gk

0(q) =
βU0

2

1

k − 1

(
a2

ν0T

)k−1

, k > 1. (15)

The fluctuations of the third term read:

βnδFv[Ĝ] = −
∞∑

k=2

1

2kk!
Q(a1b1)...(akbk)δGa1b1 . . . δGakbk , (16)

where the following irreducible correlation function with independent variables being pairs δnai
δnbi was

introduced:

Q(a1b1)...(akbk) ≡ 〈〈(δna1
δnb1) . . . (δnak

δnbk)〉〉v , (17)

and the average is performed w.r.t. the Hamiltonian Ĥv[Ĝ0].

The soft mode in this expansion is δĜ = Ψ̂ и δQ̂ = Q22Ψ̂. The term Tr ln then reads explicitly:

1

2
δTr ln(1 + βĴQ̂) = ν0Tc

∞∑

k=2

(
−1

6

)k−1
1

2k(k − 1)
TrΨ̂k = ν0Tc

(
− 1

24
TrΨ̂2 +

1

432
TrΨ̂3 − 1

5184
TrΨ̂4 + . . .

)
.

(18)

On the other hand, the Fv term generates terms with different replica structure:

βnδ(3)Fv[Ĝ] = − 1

12

(
Q33

∑

ab

Ψ3
ab + 2Q222trΨ̂

3

)
= −ν0T

(
1

360

∑

ab

Ψ3
ab +

1

180
trΨ̂3

)
, (19)

βnδ(4)Fv[Ĝ] = −
(

5

32
Q2222trΨ̂

4 +
1

48
Q44

∑

ab

Ψ4
ab +

1

8
Q422

∑

abc

Ψ2
abΨ

2
ac +

1

4
Q332

∑

abc

Ψ2
abΨacΨbc

)
=

= −ν0T

(
1

896
trΨ̂4 +

1

2016

∑

ab

Ψ4
ab +

1

840

∑

abc

Ψ2
abΨacΨbc −

1

840

∑

abc

Ψ2
abΨ

2
ac

)
, (20)
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where we have denoted:

Q222 =

∫
ν(u)du

(2 cosh β(u−µ)
2 )6

≈ ν0T

30
, Q2222 =

∫
ν(u)du

(2 cosh β(u−µ)
2 )8

≈ ν0T

140
, (21)

Q33 =

∫
ν(u)du tanh2 β(u−µ)

2

(2 cosh β(u−µ)
2 )4

≈ ν0T

30
, Q332 =

∫
ν(u)du tanh2 β(u−µ)

2

(2 cosh β(u−µ)
2 )6

≈ ν0T

210
, (22)

Q44 =

∫ ν(u)du

((
2 sinh β(u−µ)

2

)2
− 2

)2

(
2 cosh β(u−µ)

2

)8 ≈ ν0T

42
, Q422 =

∫ ν(u)du

((
2 sinh β(u−µ)

2

)2
− 2

)

(2 cosh β(u−µ)
2 )8

= −ν0T

105
. (23)

3. One-step replica symmetry breaking. The free energy per lattice cite in the saddle point approximation

(neglecting the spatial fluctuations of matrices) contains several terms βF = S[Ĝ, Q̂]/N = (SL[Ĝ, Q̂]+Sf[Q̂])/N+

βFv[Ĝ], which in the one-step replica symmetry breaking (1RSB) scheme read:

SL[Ĝ, Q̂]/N = tr(ĜQ̂)/2n =
1

2

(
−1−m

m
G0Q0 +

1

m
G0Q1 + G0Q2 + G1Q1 +mG1Q2 + G2Q1

)
, (24)

Sf/N = Tr ln(1 + βĴQ̂)/2Nn =
βU0

4

(
−
(

1

m
− 1

)(
Q0 +Q0 ln

1

βU0Q0

)
+

+
1

m

(
Q1 +Q1 ln

1

βU0Q1

)
+Q2 ln

1

βU0Q1

)
, (25)

βFv =
1

2
(G0 +mG1)

(
1

2
−K

)2

− 1

8
G0 − βµ̃

(
1

2
−K

)
− 1

m

∫
du2ν2(u2) ln Ξ(u2), (26)

where we have introduced renormalized chemical potential µ̃ = µ+T (G0 +mG1)
(
1
2 −K

)
, renormalized disorder

strength W̃ =
√
W 2 + T 2G2, and two auxiliary “distribution functions”:

ν2(u2) =
exp(−u2

2/2W̃
2)√

2πW̃
, ν1(u1, u2) =

exp(−u2
1/2T

2G1)√
2πG1T

[
2 cosh

β(u1 + u2 − µ̃)

2

]m
, Ξ(u2) =

∫
du1ν1(u1, u2).

(27)

One can extract the leading asymptotic behavior of the integral over u2 making use of the small parameter

U0/W ≪ 1:

βFv =
1

2
(G0 +mG1)K(1−K)− βµ̃

(
1

2
−K

)
−
〈
ln

(
2 cosh

β(u2 − µ̃)

2

)〉

2

− 1

2
ν0Tfv(m,G1), (28)

where the following dimensionless function was introduced:

fv(m,G1) =
2

m

∫
dz

(
ln Ξ(z,m,G1)−m ln 2 cosh

z

2
− m2G1

8

)
, (29)

Ξ(z,m,G1) = Ξ (u2 ≡ µ̃+ Tz) =

∫
dye−y2/2G1

√
2πG1

[
2 cosh

y + z

2

]m
, (30)

with the variables z = β(u2 − µ̃), and y = βu1. The variation of the full free energy w.r.t. Qi and Gi yield

equations for Gi and Qi respectively — to Eqs. (35), (36).

3.1. Analysis of the equations in the T ≪ Tc limit. The solution in the low temperature limit behaves

as m ≪ 1, G1 ≫ 1, ξ ≡ m2G1/8 = O(1). Such scaling allows us to calculate:

Ξ
(
z =

x

m
,m,G1

)
≡

m≪1
Ξ(x, ξ) =

∫
dy

4
√
πξ

exp

(
− y2

16ξ
+

1

2
|y + x|

)
=

=
eξ

2

[
ey/2

(
1 + erf

(
4ξ + x

4
√
ξ

))
+ e−x/2

(
1 + erf

(
4ξ − x

4
√
ξ

))]
, (31)
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while for auxiliary dimensionless function the following scaling holds: fv(m,G1) = 8f(ξ)/m2, where:

f(ξ) =
1

4

∫
dx

(
ln Ξ(x, ξ) − |x|

2
− ξ

)
. (32)

The saddle point equations for q ≡ Q0/ν0T , ξ и m can be written as follows:





q = f ′(ξ)/(1−m)

ξ = 3
4mβTc ln

1
f ′(ξ)

2f(ξ)− ξf ′(ξ) = 3
4mβTc(1− q)

(33)

Assuming the scaling m = µ(T/Tc), µ = O(1), the system of equations becomes fully dimensionless, and can

be reduced to the single equation for ξ variable, which can then be solved numerically:

ξ =
2f(ξ)− ξf ′(ξ)

1− f ′(ξ)
ln

1

f ′(ξ)
⇒ ξ ≈ 9.17, (34)

q = f ′(ξ) ≈ 1.43 · 10−5, µ =
4(2f(ξ)− ξf ′(ξ))

3(1− q)
≈ 1.10. (35)

Due to the large value of ξ, these numerical solutions can be obtained analytically with good precision. The

scaling function has the following asymptotic behavior:

f(ξ) ≈ π2

24
− 1

4

√
π

ξ
e−ξ, ξ ≫ 1 (36)

so that q ≈ 1
4

√
π/ξe−ξ (which yields 1.52 · 10−5), and µ ≈ 8f(ξ)/3 ≈ π2/9 (which yields 1.10). Substituting

also this asymptotic to the equation for ξ, one can see that it does contain numerically small parameter

ǫ = 6
π2 − 1

2 ≈ 0.11 and has the approximate form ln 16ξ
π ≈ ǫξ.

3.2. Distribution function of the local pinning potential. The distribution function of the vortex local

pinning potential is defined as follows:

P (u) = 〈〈δ(u − (u1 + u2)〉1〉2 ≡
∫

du2ν2(u2)
1

Ξ(u2)

∫
du1ν1(u1, u2)δ(u− (u1 + u2)), (37)

where the averages 〈. . . 〉1 and 〈. . . 〉2 are taken w.r.t. distribution functions defined in (27).

At low temperatures, the distribution function is noticeably modified in the vicinity of the chemical potential

in the region of size ∝ Tc. We will then calculate the distribution function of the rescaled variable h ≡ (u− µ̃)/Tc.

The asymptotic behavior of the function Ξ(u2) was already obtained above, see Eq. (31), where z = β(u2 − µ̃).

In this limit, the distribution function reads:

P (h) = ν0Tc ·
exp (µ|h|/2)

4
√
πξ

∫
dx

Ξ(x, ξ)
exp

(
− (µh− x)2

16ξ

)
. (38)

Just like in the previous section, these expression can be further simplified analytically for ξ ≫ 1, and read

as follows:

Ξ(x, ξ) ≈ exp (|x|/2 + ξ) , P (h) ≈ ν0Tc ·
1

2
erfc

(
4ξ − µ|h|

4
√
ξ

)
. (39)

3.3. Low temperature behavior of the entropy. The expression for the entropy can be obtained by

differentiating the full free energy w.r.t. T . If one also takes into account the saddle point equations, one obtains

the following simple expression valid for arbitrary T :

S = ν0T

(
fv(m,G1) +

1

2
m
∂fv

∂m
− G1

∂fv

∂G1
+

π2

3

)
− 3βTcQ0. (40)

As we have shown above, in the low temperature limit auxiliary function fv satisfies scaling relation

fv(m,G1) ≈ 8fv(ξ)/m
2. This scaling relation nullifies the combination of first three terms in the equation above.
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However, since fv ∝ β2, such cancellation only guarantees the absence of the unphysical terms ∼ 1/T in the

entropy. In order to extract the low-temperature behavior of the entropy, one should consider corrections to this

scaling:

∆fv(m,G1) ≡ fv(m,G1)−
8

m2
f(ξ) =

2

m2

∫
dx ln

Ξ( x
m ,m,G1)

Ξ(x, ξ)
− π2

3
. (41)

The quantity under the logarithm is close to unity when m ≪ 1, which allows us to expand:

∆fv(m,G1) =
2

m2

∫
dx

Ξ(x, ξ)

∫
dy

4
√
πξ

exp

(
− y2

16ξ

)([
2 cosh

y + x

2m

]m
− e|x+y|/2

)
− π2

3
≈

m≪1

π2

3
(g(ξ)− 1) (42)

with:

g(ξ) =
1

4
√
πξ

∫
dx

Ξ(x, ξ)
exp

(
− x2

16ξ

)
≡ P (h = 0)

ν0Tc
. (43)

The low-temperature entropy then reads S = −3βTcQ0 +
π2

3 ν0Tg(ξ) → −3βTcQ0.
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