
Supplementary Material to the article

“Influence of active loop extrusion on the statistics of triple contacts
in the model of interphase chromosomes”

1. Diagram (1). Consider diagram (1) from Fig. 2(1) in the main text, which corresponds to the scenario

when there are no loop bases between points i and j. Due to the Markov property of Gaussian chain, vectors

R1 and R2 are statistically independent, and, taking Eq. (6) from the main text into consideration, we conclude

that marginal probability distribution of R2 is equal to Pfree(R2|s2). Therefore, conditional contact probability

for diagram (1) is given by
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As it was indicated in the main text, the angle brackets in Eq. (4) denote averaging over the statistics of

random loops. To perform this procedure, it is necessary to know the probability densities of random variables

{A}i, which parametrize the contributions coming from various classes of diagrams. Since the expression for

p
(1)
jk|ij(s1, s2) does not include any loop parameters, in the case of the diagram (1), the corresponding averaging is

reduced to the multiplication of the expression (1) by the probability of encountering such a diagram. In short,

we need to find the probability that there will not be a single loop base between two randomly selected points of

the chain separated by the contour distance s1 + s2.

To derive the statistical weight of this and all subsequent diagrams, consider a Markov jump process with two

states “Loop” and “Gap” , for which time intervals are measured in units of the contour length of our polymer

chain, and transitions from one state to another occur with the rates αl = λ−1 and αg = d−1. It is clear that the

statistics of contour lengths of alternating loops and gaps are equivalent to the statistics of time intervals that

such a Markov process spends in the “Loop” and “Gap” states in the course of its stochastic dynamics. Based on

this simple analogy, we can express the probability of encountering the first diagram as follows:

w(1)(s1, s2) = πgapPr[h1 > s1 + s2], (S2)

where πgap is the probability to find the statistically stationary Markov process in the state “Gap” at arbitrary

point in time, h1 – the time after which the process first enters the “Loop” state.

Since πgap = d
d+λ and Pr[h > s1 + s2] =

∫ +∞

s1+s2
dh1pgap(h1) = e−

s1+s2
d , then

w(1)(s1, s2) =
d

d+ λ
e−

s1+s2
d ≈ 1− s1 + s2 + λ

d
, (S3)

where we performed an expansion by the parameters λ/d ≪ 1, s1/d ≪ 1 and s2/d ≪ 1, keeping only linear

corrections to the main contribution.

So, averaging the contribution of diagram (1) to conditional contact probability over statistical weight of this

diagram yields

〈p(1)jk|ij(s1, s2)〉loops = p
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. (S4)

2. Diagram (2). In the case of diagram (2) vectors R1 and R2 are also statistically independent, so marginal

probability distribution of the vector R2 is equal to Pfree(R2|s2). Therefore, conditional contact probability is

given by
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Statistical weight of diagram (2) is equal to

W (2)(L|s1, s2) = πgapPr[0 < h1 < s1 − L]ploop(L)Pr[h2 > s1 + s2 − L− h1], (S6)
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where h1 is the time after which the Markov process described in the previous section will first enter the “Loop”

state provided it was in the “Gap” state at the initial moment, L is the period of time that the process will then

spend in the “Loop” state, h2 is the period of time, which the process will be in the “Gap” state after exiting the

“Loop” state.

Since πgap = d
d+λ , Pr[0 < h1 < s1 − L] =

∫ s1−L

0
dh1pgap(h1) and Pr[h2 > s1 + s2 − L − h1] =

∫ +∞

s1+s2−L−h1
dh2pgap(h2), then in the linear approximation with regards to small dimensionless parameters

λ/d ≪ 1, s1/d ≪ 1 and s2/d ≪ 1 we get

W (2)(L|s1, s2) ≈
s1 − L

d
ploop(L). (S7)

In order to average the contribution of diagram (2) over loop disorder, we should integrate

p
(2)
jk|ij(s1, s2, L)W

(2)(L|s1, s2) over L from 0 to s1, so

〈p(2)jk|ij(s1, s2, L)〉loops =
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s1
∫

0

dL(s1 − L)ploops(L). (S8)

3. Diagram (3). For the third diagram, vectors R1 and R2 as in the previous examples are statistically in-

dependent from each other, so the marginal probability distribution of the vector R2 is equal to Pfree(R2|s2−L).

The latter is due to Eq. (3) from the main text and the observation that due to the Markov property of a linear

Gaussian chain with free ends, the effect of a loop on this diagram is reduced to a decrease in the effective contour

distance between the points j and k. The contribution of the diagram (3) to the conditional contact probability,

thus, has the form

p
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(s2 − L)3/2
. (S9)

By analogy with the previous diagram, the statistical weight of this diagram in a linear approximation by the

parameters λ/d ≪ 1, s1/d ≪ 1 and s2/d ≪ 1 is equal to

W (3)(L|s1, s2) ≈
s2 − L

d
ploop(L). (S10)

Averaging the contribution of the diagram (3) over the length of the loop yields

〈p(3)jk|ij(s1, s2, L)〉loops =

s2
∫

0

dLp
(3)
jk|ij(s1, s2, L)W

(3)(L|s1, s2) =
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∫

0

dL
ploop(L)

(s2 − L)1/2
. (S11)

4. Diagram (4). Let us move on to a more sophisticated scenario corresponding to the diagram (4). Let r1

be the vector connecting the point i to the base of the loop, r2 be the vector connecting the base of the same

loop to the point j, and finally r3 be the vector connecting the base of the loop to the point k. Due to the

Markov property of the Gaussian chain, these vectors are statistically independent from each other, and, taking

into account Eqs. (2) and (3) from the main text, we can conclude that they have normal statistics with the

marginal probability density functions Pfree(r1|s1 − l1), Pcoil(r2|l1, l1 + l2) and Pfree(r3|s2 − l2), respectively. In

this subsection l1 and l2 are lengths of segments of the loop which are portrayed at Fig. 2(4) from the main text.

The joint distribution function of the random vectors R1 and R2 can be calculated as

P
(4)
12 (R1,R2|l1, l2, s1, s2) = 〈δ(R1 − r1 − r2)δ(R2 − r3 + r2)〉r1,r2 = (S12)

=

∫

d3r1

∫

d3r2

∫

d3r3δ(R1−r1−r2)δ(R2−r3+r2)Pfree(r1|s1− l1)Pcoil(r2|l1, l1+ l2)Pfree(r3|s2− l2) = (S13)

=

∫

d3r2Pfree(R1 − r2|s1 − l1)Pcoil(r2|l1, l1 + l2)Pfree(R2 + r2|s2 − l2) = (S14)

=
1

(8π3σ2
free[s1 − l1]σ2

coil[l1, l1 + l2]σ2
free[s2 − l2])3/2

×
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×
∫

d3r2 exp

(

− (R1 − r2)
2

2σ2
free[s1 − l1]

− r
2
2

2σ2
coil[l1, l1 + l2]

− (R2 + r2)
2

2σ2
free[s2 − l2]

)

. (S15)

Thus, the partial distribution function of the vector R1 is equal to

P
(4)
1 (R1|l1, l2, s1, s2) =

1

(4π2σ2
free[s1 − l1]σ2

coil[l1, l1 + l2])3/2

∫

d3r2 exp

(

− (R1 − r2)
2

2σ2
free[s1 − l1]

− r
2
2

2σ2
coil[l1, l1 + l2]

)

.

(S16)

From equations (S15) and (S16), and Eq. (5) from the main text, we obtain conditional contact probability

for diagram (4):

p
(4)
jk|ij(s1, s2, l1, l2) =

√

6

π

(

a

leff

)3(
s1(l1 + l2)− l21

s2l1(s1 − l1) + s1l2(s2 − l2)

)3/2

. (S17)

Let us express the lengths of the loop segments as l1 = s1 − h1 and l2 = L − s1 + h1, where L is the total

contour length of the loop, h1 is the contour distance from the point i to the base of the loop in Fig. 2(4) from

the main text. In addition, we denote by h2 the contour distance from the base of the loop to the nearest loop

lying to the right of the point k. In terms of variables L and h1, the statistical weight of the diagram (4) is equal

to

W (4)(L, h1|s1, s2) = πgapploop(L)pgap(h1)Pr[h2 > s1 + s2 − L− h1]. (S18)

Since πgap = d
λ+d , Pr[h2 > s1 + s2 − L − h1] =

+∞
∫

s1+s2−L−h1

dh2pgap(h2) = e−
s1+s2−L−h1

d , then in the linear

approximation by the parameters λ/d ≪ 1, s1/d ≪ 1 and s2/d ≪ 1 we obtain

W (4)(L, h1|s1, s2) ≈
1

d
ploop(L). (S19)

In order to average the contribution of the diagram (4) over the disorder of loops, it is necessary to integrate

the product p
(4)
jk|ij(s1, s2, s1−h1, L−s1+h1)W

(4)(L, h1|s1, s2) over h1 from max(0, s1−L) to min(s1, s1+s2−L)

and over L from 0 to s1 + s2. This choice of integration limits is dictated by the fact that for the given values of

L and h1 the point j should lie on the loop, while the points i and k should be outside the loop. So

〈p(4)jk|ij(s1, s2, s1 − h1, L− s1 + h1)〉loops =

=

s1+s2
∫

0

dL

min(s1,s1+s2−L)
∫

max(0,s1−L)

dh1p
(4)
jk|ij(s1, s2, s1 − h1, L− s1 + h1)W

(4)(L, h1|s1, s2) = (S20)

=

√

6

π

(

a

leff

)3
1

d

s1+s2
∫

0

dLploop(L)

min(s1,s1+s2−L)
∫

max(0,s1−L)

dh1

(

s1L− (s1 − h1)
2

s2(s1 − h1)h1 + s1(L − s1 + h1)(s2 − L+ s1 − h1)

)3/2

.

(S21)

5. Diagram (5). Due to the Markov property of the Gaussian chain, the vectors R1 and R2 in the case of

diagram (5) are statistically independent from each other, and by taking into account Eq. (2) from the main text,

we can conclude that the marginal probability density function of the vector R2 is equal to Pfree(R2|s2). Thus,

the conditional contact probability for the diagram (5) has a simple form

p
(5)
jk|ij(s1, s2, l1, l2) =

√

6

π
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. (S22)

Let us express the lengths of the loop segments indicated in Fig. 2(5) from the main text as l1 = qL,

l2 = (1 − q)L, where L is the total contour length of the loop, q is the ratio in which the point i divides

the loop. In terms of a pair of variables L and q, the statistical weight of the diagram (5) is equal to

W (5)(L, q|s1, s2) = πloop

L

λ
ploop(L)ρ(q)Pr[h1 > s+ 1 + s2 − (1− q)L], (S23)
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where πloop is the probability that the statistically stationary Markov process introduced in section 1 is in the

“Loop” state at an arbitrary moment of time (that is, using the language of the original polymer model, this is

the probability that the point i lies on a loop), L
λ ploop(L) is the probability density function of the total time

that the process will spend in the “Loop” state during the current visit (that is, it is the probability density of the

length of the loop on which the point i lies), h1 – the time after which the process, after leaving the “Loop” state,

will return to it again (that is, the contour distance from the base of the loop in the Fig. 2(5) from the main text

to the nearest loop lying to the right of the point k), ρ(q) is the distribution function of a random variable q.

Since πloop = λ
d+λ and ρ(q) = θ(q)θ(1 − q), where θ(q) is the Heaviside function, and Pr[h1 > s + 1 + s2 −

(1 − q)L] =
∫ +∞

s+1+s2−(1−q)L
dh1pgap(h1), then in the linear approximation by the parameters λ/d ≪ 1, s1/d ≪ 1

and s2/d ≪ 1 we obtain

W (5)(L, q|s1, s2) ≈
L

d
ploop(L)θ(q)θ(1 − q). (S24)

In order to average the contribution of the diagram (5) over the disorder of loops, it is necessary to integrate

the product p
(5)
jk|ij(s1, s2, qL, (1− q)L)W (5)(L, q|s1, s2) over q from max(0, 1− s1

L ) up to 1, and over L from 0 to

+∞. This choice of integration limits is dictated by the fact that for the given values of L and q, the point i

should lie on the loop, while the points j and k should be outside the loop. Therefore

〈p(5)jk|ij(s1, s2, l1, l2)〉loops =

+∞
∫

0

dL

1
∫

max(0,1−
s1
L

)

dqp
(5)
jk|ij(s1, s2, qL, (1− q)L)W (5)(L, q|s1, s2) = (S25)

=

√

6

π

(

a

leff

)3
1

s
3/2
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1

d





s1
∫

0

dLLploop(L) + s1

+∞
∫

s1

dLploop(L)



 . (S26)

6. Diagram (6). For the diagram (6), vectors R1 and R2 are statistically independent from each other. Let

us denote by r1 the vector connecting the point j to the base of the loop in Fig. 2(6) from the main text, and

by r2 – the vector connecting the base of the loop to the point k. Due to the Markov property of the Gaussian

chain, the vectors r1 and r2 are statistically independent, and taking into account Eqs. (2) and (3) from the main

text, we can conclude that they have normal statistics with the marginal probability densities Pfree(r1|s2 − l2)

and Pcoil(r2|l2, l1 + l2), respectively. In this subsection, l1 and l2 are the lengths of the loop segments shown in

Fig. 2(6) from the main text. The marginal distribution function of the vector R2 can be calculated as

P
(6)
2 (R2|s1, s2, l1, l2) = 〈δ(R2 − r1 − r2)〉r1,r2 = (S27)

=

∫

d3r1

∫

d3r2δ(R2 − r1 − r2)Pfree(r1|s2 − l2)Pcoil(r2|l2, l1 + l2) = (S28)

=

∫

d3r1Pfree(r1|s2 − l2)Pcoil(R2 − r1|l2, l1 + l2) = (S29)

=
1

(4πD(s2 − l2 +
l1l2
l1+l2

))3/2
exp

(

− R
2
2

4D(s2 − l2 +
l1l2
l1+l2

)

)

. (S30)

Therefore, the conditional contact probability is given by

p
(6)
jk|ij(s1, s2, l1, l2) =

√

6

π

(

a

leff

)3(
l1 + l2

s2(l1 + l2)− l22

)3/2

. (S31)

Let us express the lengths of the loop segments as l1 = L − s1 − s2 + h1 and l2 = s1 + s2 − h1, where L is

the total contour length of the loop, h1 is the contour distance from the point i to the base of the loop in the

Fig. 2(6) from the main text. In terms of a pair of variables L and h1, the statistical weight of the diagram (6) is

W (6)(L, h1|s1, s2) = πgappgap(h1)ploop(L). (S32)
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If λ/d ≪ 1, s1, s2 ≪ d, then the following approximate expression can be used in subsequent calculations

W (6)(L, h1|s1, s2) ≈
1

d
ploop(L). (S33)

The contribution of the diagram (6) averaged over the disorder of loops is given by

〈p(6)jk|ij(s1, s2, l1, l2)〉loops =

s1+s2
∫

s1

dh1

+∞
∫

s1+s2−h1

dLp
(6)
jk|ij(s1, s2, L− s1 − s2 + h1, s1 + s2 − h1)W

(6)(L, h1|s1, s2) =

(S34)

=

√

6

π

(

a

leff

)3
1

d

s1+s2
∫

s1

dh1

+∞
∫

s1+s2−h1

dLploop(L)

(

L

s2L− (s1 + s2 − h1)2

)3/2

. (S35)

The choice of integration limits in the last formula is due to the requirement that for the given values of L and

h1, the point k must lie on the loop, while the points i and j must be outside the loop.

7. Diagram (7). Let r1 be the vector connecting the point j to the base of the loop in Fig. 2(7) from the

main text, and r2 be the vector connecting the base of the loop to the point k. It is clear that the vector r2 is

statistically independent from the vectors r1 and R1, and its probability density has the form Pfree(r2|s1+s2− l2).

In this subsection, l1 and l2 are the lengths of the loop segments shown in Fig. 2(7) from the main text.

The vectors r1 and R1 are not statistically independent from each other, since they connect points belonging

to the same loop. Using the analogy between the conformation of an ideal polymer and the trajectory of a random

walk, the joint distribution function of these vectors can be expressed as

ρ(R1, r1|l1, l2, s1) = G[R(s1) = R1,R(l2) = R1 + r1|R(0) = 0,R(l1 + l2) = 0] = (S36)

= G[R(l2) = R1 + r1|R(s1) = R1,R(0) = 0,R(l1 + l2) = 0]G[R(s1) = R1|R(0) = 0,R(l1 + l2) = 0] = (S37)

= G[R(l2) = R1 + r1|R(s1) = R1,R(l1 + l2) = 0]G[R(s1) = R1|R(0) = 0,R(l1 + l2) = 0], (S38)

where R(t) is the displacement vector of a Brownian particle having diffusivity D = l2eff/6 during the time t,

and G[...|...] denotes the probability distribution of the particle displacement at one or more time points, under a

given set of conditions. The resulting expression directly follows from the definition of the conditional probability

and form the Markov property of Brownian motion.

For the probability distributions entering Eq. (S38) we find

G[R(l2) = R1 + r1|R(s1) = R1,R(l1 + l2) = 0] =
Pfree(r1|l2 − s1)Pfree(−R1 − r1|l1)

Pfree(−R1|l1 + l2 − s1)
= (S39)

=

(

l1 + l2 − s1
4πDl1(l2 − s1)

)3/2

exp

(

− (R1 + r1)
2

4Dl1
− r

2
1

4D(l2 − s1)
+

R
2
1

4D(l1 + l2 − s1)

)

, (S40)

and

G[R(s1) = R1|R(0) = 0,R(l1 + l2) = 0] = Pcoil(R1|s1, l1 + l2) = (S41)

=

(

l1 + l2
4πDs1(l1 + l2 − s1)

)3/2

exp

(

− (l1 + l2)R
2
1

4Ds1(l1 + l2 − s1)

)

. (S42)

Substituting Eq. (S40) and Eq. (S42) into Eq. (S38), one obtains

ρ(R1, r1|l1, l2, s1) =
(

l1 + l2
16π2D2s1l1(l2 − s1)

)3/2

exp

(

− (R1 + r1)
2

4Dl1
− r

2
1

4D(l2 − s1)
− R

2
1

4Ds1

)

. (S43)

The joint probability distribution of the random vectors R1 and R2 can be calculated as

P
(7)
12 (R1,R2|l1, l2, s1, s2) =

∫

d3r1

∫

d3r2δ(R2 − r1 − r2)Pfree(r2|s1 + s2 − l2)ρ(R1, r1|l1, l2, s1) = (S44)
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=

∫

d3r2Pfree(r2|s1 + s2 − l2)ρ(R1,R2 − r2|l1, l2, s1) = (S45)

=

(

l1 + l2
64π3D3s1l1(l2 − s1)(s1 + s2 − l2)

)3/2

exp

(

− R
2
1

4Ds1

)

· (S46)

·
∫

d3r2 exp

(

− r
2
2

4D(s1 + s2 − l2)
− (R1 +R2 − r2)

2

4Dl1
− (R2 − r2)

2

4D(l2 − s1)

)

. (S47)

The marginal probability distribution of the vector R1 has the form

P
(7)
1 (R1|s1, l1, l2) = Pcoil(R1|s1, l1 + l2) =

(

l1 + l2
4πDs1(l1 + l2 − s1)

)3/2

exp

(

− (l1 + l2)R
2
1

4Ds1(l1 + l2 − s1)

)

. (S48)

From Eq. (5) from the main text, and Eqs. (S47) and (S48), we find the conditional contact probability for

the diagram (7)

p
(7)
jk|ij(s1, s2, l1, l2) =

√

6

π

(

a

leff

)3(
l1 + l2 − s1

s2(l1 + l2) + l2(2s1 − l2)− s1(s1 + s2)

)3/2

. (S49)

Let us express the lengths of the loop segments as l1 = qL, l2 = (1− q)L, where L is the total contour length

of the loop, q is the ratio in which the point i divides the loop. In terms of a pair of variables L and q, the

statistical weight of diagram (7) is

W (7)(s1, s2, L, q) = πloop

L

λ
ploop(L)θ(q)θ(1 − q)Pr[h1 > s1 + s2 − l2], (S50)

where h1 is the contour distance from the base of the loop in Fig. 2(7) from the main text to the nearest loop

lying to the right of the point k. In a linear approximation by the parameters λ/d ≪ 1, s1/d ≪ 1 and s2/d ≪ 1

we find

W (7)(s1, s2, L, q) ≈
L

d
ploop(L)θ(q)θ(1 − q). (S51)

To average the contribution of the 7-th diagram over the disorder of loops, it is necessary to integrate the

product p
(7)
jk|ij(s1, s2, qL, (1− q)L)W (7)(L, q|s1, s2) over q from max(0, 1− s1+s2

L ) up to 1− s1
L and over L from s1

to +∞. This choice of integration limits is dictated by the fact that for the given values of L and q, the points i

and j should lie on the loop, and the point k – outside the loop. So

〈p(7)jk|ij(s1, s2, l1, l2)〉loops =

+∞
∫

s1

dL

1−
s1
L

∫

max(0,1−
s1+s2

L
)

dqp
(7)
jk|ij(s1, s2, qL, (1− q)L)W (7)(L, q|s1, s2) = (S52)

=

√

6

π

(

a

leff

)3
1

d







s1+s2
∫

s1

dL

1−
s1
L

∫

0

dqLploop(L)

(

L− s1
s2L+ (1− q)L(2s1 − (1 − q)L)− s1(s1 + s2)

)3/2

+ (S53)

+

+∞
∫

s1+s2

dL

1−
s1
L

∫

1−
s1+s2

L

dqLploop(L)

(

L− s1
s2L+ (1 − q)L(2s1 − (1− q)L)− s1(s1 + s2)

)3/2






. (S54)

8. Diagram (8). Since the diagrams (7) and (8) are equivalent up to the permutation of the points i and k,

then

P8(R1,R2|l1, l2, s1, s2) = P7(−R2,−R1|l1, l2, s2, s1) = (S55)

=

(

l1 + l2
64π3D3s2l1(l2 − s2)(s1 + s2 − l2)

)3/2

exp

(

− R
2
2

4Ds2

)

· (S56)
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∫

d3r1 exp

(

− r
2
1

4D(s1 + s2 − l2)
− (R1 +R2 − r1)

2

4Dl1
− (R1 − r1)

2

4D(l2 − s2)

)

, (S57)

where l1 and l2 are the lengths of the loop segments shown in Fig. 2(8) from the main text.

Next, comparing diagrams (6) and (8), we see that the partial distribution function of the vector R1 can be

expressed as

P
(8)
1 (R1|s1, s2, l1, l2) = P

(6)
1 (R1|s2, s1, l1 + s2, l2 − s2) = (S58)

=

(

l1 + l2
4πD(s1(l1 + l2) + l2(2s2 − l2)− s22)

)3/2

exp

(

− (l1 + l2)R
2
1

4D(s1(l1 + l2) + l2(2s2 − l2)− s22)

)

. (S59)

From Eq. (5) from the main text, and Eqs. (S57) and (S59), we find the conditional contact probability for

the diagram (8)

p
(8)
jk|ij(s1, s2, l1, l2) =

√

6

π

(a

b

)3
(

s1(l1 + l2) + l2(2s2 − l2)− s22
s2[s1(l1 + l2) + l2(2s2 − l2)− s2(s1 + s2)]

)3/2

= (S60)

=

√

6

π

(a

b

)3
(

s1L+ (s1 + s2 − h1)(s2 − s1 + h1)− s22
s2[s1L+ (s1 + s2 − h1)(s2 − s1 + h1)− s2(s1 + s2)]

)3/2

. (S61)

Let us express the lengths of the loop segments as l2 = s1 + s2 − h1 and l1 = L − s1 − s2 + h1, where L is

the total contour length of the loop in Fig. 2(8) from the main text, h1 is the contour distance from the point i

to the base of this loop. In terms of a pair of variables L and h1, the statistical weight of the diagram (8) is

W (8)(L, h1|s1, s2) = πgappgap(h1)ploop(L). (S62)

If λ/d ≪ 1, s1, s2 ≪ d, then an approximate expression can be used in subsequent calculations

W (8)(L, h1|s1, s2) ≈
1

d
ploop(L). (S63)

To average the contribution of the diagram (8) over the disorder of loops, it is necessary to integrate the

product p
(8)
jk|ij(s1, s2, s1 + s2 − h1, L − s1 − s2 + h1)W

(8)(L, h1|s1, s2) over L from s1 + s2 − h1 to +∞ and over

h1 from 0 to s1. This choice of integration limits is dictated by the fact that for the given values of L and h1 the

points j and k should lie on the loop, and the point i should lie outside the loop. So

〈p(8)jk|ij(s1, s2, l1, l2)〉loops =

s1
∫

0

dh1

+∞
∫

s1+s2−h1

dLp
(8)
jk|ij(s1, s2, s1+s2−h1, L−s1−s2+h1)W

(8)(L, h1|s1, s2) = (S64)

=

√

6

π

(

a

leff

)3
1

d

s1
∫

0

dh1

+∞
∫

s1+s2−h1

dLploop(L)

(

s1L+ (s1 + s2 − h1)(s2 − s1 + h1)− s22
s2[s1L+ (s1 + s2 − h1)(s2 − s1 + h1)− s2(s1 + s2)]

)3/2

. (S65)

9. Diagram (9). In the case of the diagram (9) (see Fig. 2(9) from the main text) the random vectors R1 and

R2 are not statistically independent, since they connect the points lying on the same loop. The joint probability

distributions of these vectors can be represented as

P
(9)
12 (R1,R2|L, s1, s2) = G[R(s1) = R1,R(s1 + s2) = R1 +R2|R(0) = 0,R(L) = 0] = (S66)

= G[R(s1 + s2) = R1 +R2|R(s1) = R1,R(0) = 0,R(L) = 0]G[R(s1) = R1|R(0) = 0,R(L) = 0] = (S67)

= G[R(s1 + s2) = R1 +R2|R(s1) = R1,R(L) = 0]G[R(s1) = R1|R(0) = 0,R(L) = 0], (S68)

where L is the length of the loop, R(t) is the displacement vector of a Brownian particle with a diffusion coeffi-

cient D = l2eff/6 for the time t, and G[...|...] denotes the probability distribution of the particle displacements at

one or more time points, under a given set of conditions.

7



For the probability distributions entering Eq. (S68), we find

G[R(s1 + s2) = R1 +R2|R(s1) = R1,R(L) = 0] =
Pfree(R2|s2)Pfree(−R1 −R2|L− s1 − s2)

Pfree(−R1|L− s1)
= (S69)

=

(

L− s1
4πDs2(L− s1 − s2)

)3/2

exp

(

− (R1 +R2)
2

4D(L− s1 − s2)
− R

2
2

4Ds2
+

R
2
1

4D(L− s1)

)

, (S70)

and

G[R(s1) = R1|R(0) = 0,R(L) = 0] = Pcoil(R1|s1, L) =
(

L

4πDs1(L− s1)

)3/2

exp

(

− LR2
1

4Ds1(L− s1)

)

. (S71)

Next, substituting (S70) and (S71) into (S68), one obtains

P
(9)
12 (R1,R2|L, s1, s2) =

(

L

16π2D2s1s2(L− s1 − s2)

)3/2

exp

(

− (R1 +R2)
2

4D(L− s1 − s2)
− R

2
2

4Ds2
− R

2
1

4Ds1

)

, (S72)

and

P
(9)
1 (R1|L, s1) = Pcoil(R1|s1, L) =

(

L

4πDs1(L− s1)

)3/2

exp

(

− R
2
1

4D(L− s1)

)

. (S73)

From Eqs. (S72) and (S73) and Eq. (5) from the main text, we obtain the conditional contact probability for

the diagram (9)

p
(9)
jk|ij(s1, s2, L) =

√

6

π

(

a

leff

)3(
L− s1

s2(L − s1 − s2)

)3/2

. (S74)

Statistical weight of the diagram (9) is equal to

W (9)(L, q|s1, s2) = πloop

L

λ
ploop(L)θ(q)θ(1 − q), (S75)

where q is the ratio in which the point i divides the loop. In the linear approximation by the parameter λ/d ≪ 1

we find

W (9)(L, q|s1, s2) ≈
L

d
ploop(L)θ(q)θ(1 − q). (S76)

To average the contribution of the diagram (9) over the disorder of loops, it is necessary to integrate the

product p
(9)
jk|ij(s1, s2, L)W

(9)(L, q|s1, s2) over q from 0 up to 1− s1+s2
L and over L from s1+s2 to +∞. This choice

of integration limits is dictated by the fact that for the given values of L and q, all three points i and j and k

must lie on the loop. So

〈p(9)jk|ij(s1, s2, L)〉loops =

+∞
∫

s1+s2

dL

1−
s1+s2

L
∫

0

dqp
(9)
jk|ij(s1, s2, L)W

(9)(L, q|s1, s2) = (S77)

=

√

6

π

(

a

leff

)3
1

d

+∞
∫

s1+s2

dL

(

L− s1
s2

)3/2
ploop(L)√
L− s1 − s2

. (S78)

10. Conditional contact probability. Contributions of the diagrams given by Eqs. (S4), (S8), (S11), (S21),

(S26), (S35), (S54), (S65) and (S78), after being substituted into Eq. (4) from the main text, yield Eq. (7) from

the main text, where

F (z1, z2) = −z1 − z2 − 1 + z21

1
∫

0

dL̃(1− L̃)λploop(λz1L̃) + z22

1
∫

0

dL̃
λploop(λz2L̃)

(1− L̃)1/2
+ (S79)
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+ z22

1+
z1
z2

∫

0

dL̃

min(
z1
z2

;
z1
z2

+1−L̃)
∫

max(0;
z1
z2

−L̃)

dh̃λploop(λz2L̃)

[

z1
z2
L̃− ( z1z2 − h̃)2

( z1z2 − h̃)h̃+ z1
z2
(L̃ − z1

z2
+ h̃)(1− L̃+ z1

z2
− h̃)

]3/2

+ (S80)

+ z21

1
∫

0

dL̃L̃λploop(λz1L̃) + z21

+∞
∫

1

dL̃λploop(λz1L̃) + z22

1+
z1
z2

∫

z1
z2

dh̃

+∞
∫

1+
z1
z2

−h̃

dL̃λploop(λz2L̃)

[

L̃

L̃− (1 + z1
z2

− h̃)2

]3/2

+

(S81)

+

(

z2
z1

)3/2

z21

1+
z2
z1

∫

1

dL̃

1− 1

L̃
∫

0

dqL̃λploop(λz1L̃)

[

L̃− 1
z2
z1
L̃+ (1− q)L̃(2− (1− q)L̃) + 1 + z2

z1

]3/2

+ (S82)

+

(

z2
z1

)3/2

z21

+∞
∫

1+
z2
z1

dL̃

1− 1

L̃
∫

1− 1

L̃
(1+

z2
z1

)

dqL̃λploop(λz1L̃)

[

L̃− 1
z2
z1
L̃+ (1− q)L̃(2− (1 − q)L̃) + 1 + z2

z1

]3/2

+ (S83)

+ z21

1
∫

0

dh̃

+∞
∫

1+
z2
z1

−h̃

dL̃λploop(λz1L̃)







L̃+ (1 + z2
z1

− h̃)( z2z1 − 1 + h̃)−
(

z2
z1

)2

L̃+ (1 + z2
z1

− h̃)( z2z1 − 1 + h̃)− z2
z1
(1 + z2

z1
)







3/2

+ (S84)

+ z22

+∞
∫

1+
z1
z2

dL̃
λploop(λz2L̃)
√

L̃− z1
z2

− 1

(

L̃− z1
z2

)3/2

. (S85)

11. Marginal contact probability. The marginal contact probability between two pints j and k is given

by the following expression (see [39] in the main text)

pjk(s2) = Pr[R2 < a] =

√

6

π

(

a

leff

)3
1

s
3/2
2

(

1 +
λ

d
f
(s2
λ

)

)

, (S86)

where

f (z2) = −1− z2 + z22

1
∫

0

dL̃
1 + 2L̃

(1− L̃)1/2
λploops(λz2L̃) + z22

+∞
∫

1

dL̃
L̃1/2(L̃+ 2)

(L̃− 1)1/2
λploops(λz2L̃). (S87)
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