Supplementary Material to the article

“Anomalous radiative heating of a metal particle moving in close
proximity to a metal plate”

A. General relativistic formula for the rate of particle heating. In the problem of relativistic
fluctuation-electromagnetic interaction of a small dipole particle moving with a constant velocity V parallel
to the surface of a thick plate with frequency-dependent dielectric permittivity ¢ and magnetic permittivity u,
one should discriminate the quantities relating to different inertial reference frames: the particle frame of rest,
and that of the plate (laboratory system). The former one is co-moving with velocity V' in the z-direction of the
Cartesian coordinate system, associated with the plate. Then the rate of particle heating d@’/dt’ in its frame of
rest (i.e. local rate of heating) is given by [13]
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where af ,,(w) are the imaginary parts of the particle electrical and magnetic polarizabilities, v = (1 —
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In the limit V/c < 1 (v = 1), taking the retardation into account, the quantity d@’/d¢’ coincides with the rate
of particle heating d@Q/dt in the reference frame of the plate. In this case, formula (S1) reduces to (1).

B. Structure of formula (1). In the case V' = 0, formula (1) coincides with the well-known results [3,6-8].
For V # 0, its key feature is the presence of the frequency factor w™ in the integrand. It is the factor w™ that
mathematically leads to the possibility of anomalous heating of the particle. To illustrate the appearance of w™ in
(5), we consider a simpler case of a nonretarded nonrelativistic interaction of a small particle with a fluctuating
electric dipole moment. In this case, the initial expression for the particle heating rate d@/dt is given by [13]

dQ/dt = dQW /dt + dQP /dt = (A*PE™) + (dMIEP), (S2)

where indices “sp” and “ind” denote spontaneous and induced components of the fluctuating dipole moment of
the particle and the electric field of the surface, the dots over d denote time derivatives, and the angular brackets
denote complete quantum statistical averaging. When calculating the first term in (S2), the solution to the Pois-
son equation A¢ = 4x div P for the electric potential ¢ has to be fond, where P = §(x — Vt)§(y)d(z — 2z0)d*P(¢)
is the polarization created by fluctuating dipole moment d*P(¢) of a particle. The ¢ is expressed by the integral
Fourier-transform

b(r, 2 ) = # / dusd?ke(w, k; 2) exp(i(kr — wt)), (S3)
where r = (z,y), k = (ksz, ky). The d®P(¢) is expressed by
d°P(t) = (2—17r) /dwd(w)exp(—iwt). (S4)

The Poisson equation is solved under the standard boundary conditions ¢(r, 4+0,t) = ¢(r, —0,t), 0.(r, 2,t) =10 =
€d,(r, z,t),——o, where ¢ is the dielectric permittivity of the plate. For the Fourier-component of the induced
potential created by the moving particle, it follows [13]

P (w, k; 2) = %A(w) exp(—k(z + 20))[ikd*® (w — k, V) + kdP (w — k. V)], (S5)



where A(w) = ((w) — 1)/(e(w) + 1). Using (S5) and the relationship E*4 = —V¢nd| the induced electric field
at the particle location point (V'¢,0, zo) is given by

EM = / dwd® ko™ (w, k; 2) exp(—i(w — k, V). (S6)
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Having substituted (S4) and (S6) into the first term of (S2) and taking the correlator of the particle dipole
moments into account
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where i, k = x,y, z and o (w) is the imaginary part of the particle polarizability, we obtain
QD _ h | hw
Q / / dk, / dkykwte 2200/ (W) TmA (w ) coth (S8)

where w™ = w + k, V. When obtaining (S8), the analytical properties of the functions a(w) and A(w) are used
(evenness of their real parts and oddness of imaginary parts). When calculating the term dQ(? /dt in (S2), the
linear integral relation between E? and d'™? is used, yielding

dind(t) = ﬁ /dwa(w — kV)E*®(w, k; 20) exp(—(w — k. V)t). (S9)

The correlator of electric fields of the plate arising in this case is worked out using the fluctuation-dissipation
relation [13]
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Substituting (S9) and (S10) into the second term of (S2) yields
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Summing up (S9) and (S11), yields
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Formula (S11) coincides with (1) when passing in the latter to the non-retarded limit (¢ — oo, go — k). In the
relativistic solution to this problem, it follows A(w) — (eqo — q)/(eqo + ¢). Similarly, if the heating of the particle
due to the magnetic interaction is taken into account, one obtains d@/dt = (m**B"? 4 (m"9B*P), where m®P-ind
u B%"d are the spontaneous and induced components of the fluctuation magnetic moment of the particle and
the magnetic field of the plate.The corresponding calculations lead to formula (S11) with the electric polariz-
ability replaced by the magnetic one and A(w) — (¢ —1)/(x + 1). Upon relativistic consideration, respectively,
A(w) = (pgo0 — 9)/ (g0 + q)-

Thus, the appearance of a “shifted” frequency w™ in the formulas for the heating rate dQ/dt of a particle
is mathematically due to the presence of derivatives of the dipole moment in (S2), which must be taken before
substituting the instantaneous coordinates of the particle (V't,0, zp), with subsequent application of analytical
properties of polarizability a(w) and the Fresnel reflection coefficients A(w) of plate.




