Supplementary Material to the article

"Density functional theory, molecular dynamics and AlteQ studies approaches of baimantuoluoamide A and baimantuoluoamide B to identify potential inhibitors of M^{pro} proteins: a novel target for the treatment of SARS COVID-19"

Computational resource and data set. The hardware and operating systems utilized were Linux (Intel Core i9-9920X, 64 GB RAM, graphical processing unit (GPU) Nvidia GTX 1080 Ti 11 GB, SSD M.2 250 GB, and SSD SATA 500 GB) and Windows (Intel Core i7 Gen 10 and 16 GB RAM). For preparing the ligands and receptors, Windows-based Chimera version 1.15 with Modeller 9.21 plug-in was used. Molecular dynamic simulation was carried out using the Linux-based programs Gaussian 09W and Amber18 package.

The protein target was obtained from the protein data bank using the PDB code: 2GTB (resolution: 2.00 Å; https://www.rcsb.org/structure/2GTB) [1]. Ligands were obtained from previous docking procedure. The initial coordinate of ligand on protein were obtained from the most stable (the most negative value of the docking score) position of the ligand on the protein.

The simulation findings were significantly influenced by the force fields. During the simulation phase, we employed the ff14SB force field as a part of the AMBER package software. The energy minimization stage, the heating stage, the density stage, the equilibrium stage, and the production stage were among the parameters that were calculated. Leap module was used to design the topology of the ligand, receptor, and ligand-receptor complex. The production stage used in this study was 20 ns to obtain the trajectories needed for analyzing several properties in the molecular dynamic simulation process.

T.-W. Lee, M. M. Cherney, J. Liu, K. E. James, J. C. Powers, L. D. Eltis, and M. N. G. James, J. Mol. Biol. 366, 916 (2007).

Fig. S1. Docking results of baia

Fig. S2. Docking results of baib

Fig. S3. The mdout analysis plotted along 40 ns of MD simulation

Fig. S4. The root-mean-square displacement of complex, backbone, and ligand for each system plotted along 40 ns of MD simulation

Table S1.	The calculated	HOMO-LUMO	energy	values and	related	molecular	properties of	of the	baimantuol	10amide .	A and b	oaiman-
tuoluoamid	le B molecule											

Molecular properties	Baimantuoluoamide A	Baimantuoluoamide B
	Energy (eV)	Energy (eV)
$E_{\rm HOMO}$ (eV)	-6.089	-5.826
$E_{\rm LUMO}$ (eV)	-1.592	-1.397
Energy gap (eV)	4.497	4.428
Ionization energy (I)	6.089	5.826
Electron affinity (A)	1.592	1.397
Global hardness (η)	2.248	2.214
Chemical potential (μ)	-3.840	-3.612
Global electrophilicity index (ω)	3.280	2.945
Softness (S)	0.445	0.452

Table S2. The calculated Mulliken atomic charges and local reactivity descriptors of the baimantuoluoamide A molecule by B3LYP/6-31 + G(d, p) method

Atom	Mulliken atomic charge values			Fukui Functions				
	Neutral	Cation	Anion	Nucleophilic attack (f_k^+)	Electrophilic attack (f_k^-)	Radical attack (f_k^0)		
C1	-0.1074	-0.0757	-0.1240	-0.017	-0.032	0.048		
C2	-0.1844	-0.1583	-0.2035	-0.019	-0.026	0.045		
C3	0.0964	0.1081	0.1041	0.008	-0.012	0.004		
C4	-0.1469	-0.1198	-0.1865	-0.040	-0.027	0.067		
C5	-0.1394	-0.1085	-0.1469	-0.007	-0.031	0.038		
C6	0.2531	0.2764	0.2070	-0.046	-0.023	0.069		
H7	0.1450	0.2153	0.0796	-0.065	-0.070	0.136		
H8	0.1308	0.1919	0.0757	-0.055	-0.061	0.116		
H9	0.1379	0.1907	0.0896	-0.048	-0.053	0.101		
H10	0.1233	0.1916	0.0601	-0.063	-0.068	0.131		
O11	-0.6083	-0.5222	-0.6515	-0.043	-0.086	0.129		
H12	0.3716	0.4107	0.3421	-0.029	-0.039	0.069		
C13	-0.1226	-0.1016	-0.1681	-0.045	-0.021	0.066		
H14	0.1335	0.1912	0.0620	-0.071	-0.058	0.129		
C15	-0.1510	-0.1003	-0.1995	-0.048	-0.051	0.099		
H16	0.1448	0.2032	0.0757	-0.069	-0.058	0.127		
C17	0.4514	0.4703	0.4146	-0.037	-0.019	0.056		
O18	-0.4672	-0.3752	-0.5382	-0.071	-0.092	0.163		
N19	-0.5344	-0.5175	-0.5371	-0.003	-0.017	0.020		
C20	-0.2482	-0.2676	-0.2290	0.019	0.019	-0.039		
H21	0.1485	0.1796	0.1198	-0.029	-0.031	0.060		
H22	0.1644	0.2130	0.1229	-0.042	-0.049	0.090		
H23	0.1656	0.1634	0.1708	0.005	0.002	-0.007		
C24	-0.1042	-0.1309	-0.0903	0.014	0.027	-0.041		
H25	0.1507	0.1839	0.1242	-0.026	-0.033	0.060		
H26	0.1696	0.1897	0.1483	-0.021	-0.020	0.041		
C37	-0.2304	-0.2404	-0.2180	0.012	0.010	-0.022		
H28	0.1623	0.1664	0.1514	-0.011	-0.004	0.015		
H29	0.1436	0.1592	0.1282	-0.015	-0.016	0.031		
C30	-0.3187	-0.3198	-0.3105	0.008	0.001	-0.009		
H31	0.1742	0.1839	0.1560	-0.018	-0.010	0.028		
H32	0.1761	0.1981	0.1436	-0.033	-0.022	0.055		
C33	0.5103	0.5136	0.4840	-0.026	-0.003	0.030		
O34	-0.4250	-0.4237	-0.4458	-0.021	-0.001	0.022		
O35	-0.4924	-0.4873	-0.5036	-0.011	-0.005	0.016		
C36	-0.1733	-0.1788	-0.1620	0.011	0.005	-0.017		
H37	0.1678	0.1771	0.1526	-0.015	-0.009	0.024		
H38	0.1678	0.1707	0.1585	-0.009	-0.003	0.012		
H39	0.1654	0.1795	0.1436	-0.022	-0.014	0.036		

Mulliken atomic charge values Fukui functions Atom Nucleophilic attack (f_k^+) Electrophilic attack (f_k^-) Radical attack (f_k^0) Neutral Cation Anion C10.0795 0.0906 0.0779 -0.002-0.0110.013-0.1723-0.1383-0.2082-0.036-0.0340.070 C2C30.35650.38620.3489-0.008-0.0300.037 0.34200.37440.0010.031C40.3432-0.032C5-0.1942-0.1666-0.2258-0.032-0.0280.059C60.0907 0.10640.0885-0.002-0.0160.018 0.1806 0.22670.082H70.1451-0.036-0.0460.12430.0748H80.1842-0.050-0.0600.109 C90.47890.50740.4017-0.077-0.0280.1060.47300.49650.3964-0.077-0.0240.100C10C11-0.4819-0.4856-0.48160.0000.004-0.004H120.14960.1910 0.1206-0.029-0.0410.070 H130.14750.1898 0.1181 -0.029-0.0420.072H140.15290.18720.1344-0.019-0.0340.053C15-0.4819-0.4868-0.48110.0010.005-0.0060.1967H160.15320.1243-0.029-0.0440.072H170.14170.17960.1188 -0.023-0.0380.061H180.15250.19620.1235-0.029-0.0440.073N19 -0.7184-0.6864-0.71860.000 -0.0320.032-0.7830-0.7571-0.7884-0.005-0.0260.031N20 0.33020.3759H210.2817-0.049-0.0460.094-0.3961-0.3005-0.49910.199 O22-0.103-0.096O23 -0.4262-0.3243-0.5267-0.101-0.1020.202C24-0.0943-0.1253-0.07490.0190.031-0.0500.17830.062H250.21650.1544-0.024-0.038H260.17960.20950.1489-0.031-0.0300.0610.15410.14760.15690.0030.007-0.009H280.14260.15320.1400-0.003-0.0110.013C290.0870 0.09250.0830 -0.004-0.0050.010 H300.13220.14000.1270-0.005-0.0080.013C310.09110.09020.09180.0010.001-0.0020.14320.14570.1393-0.004-0.0020.006 H32C33-0.0589-0.0569-0.05830.001-0.0020.001 H340.14970.15360.1449-0.005-0.0040.009 0.1796H350.16340.1454-0.018-0.0160.034O36-0.6298-0.6321-0.62650.0030.002-0.0060.3951H370.41320.3801-0.015-0.0180.033O38 -0.6377-0.6398-0.63620.0010.002-0.004H390.4184 0.42830.4095-0.009-0.0100.019O40-0.6105-0.6138-0.60810.0020.003-0.0060.37910.3929 0.3633-0.016-0.0140.030 H41-0.5684-0.5769-0.56140.007-0.015O420.009-0.5918O43-0.5849-0.58300.009 -0.007-0.002O44-0.6156-0.6092-0.6218-0.006-0.0060.013O45-0.6071-0.6044-0.6125-0.005-0.0030.008-0.49920.007 O46-0.4957-0.5030-0.004-0.003O47-0.6192-0.6188-0.61920.0000.000 0.000 C480.0670 0.06640.07020.003-0.0040.001C490.08190.08200.0880 0.0060.000 -0.006C500.08910.08710.0853-0.0040.0020.002

Table S3. The calculated Mulliken atomic charges and local reactivity descriptors of the baimantuoluoamide B molecule by B3LYP/6-31 + G(d, p) method

Atom	Mulliken atomic charge values			Fukui functions				
	Neutral	Cation	Anion	Nucleophilic attack (f_k^+)	Electrophilic attack (f_k^-)	Radical attack (f_k^0)		
C51	0.1255	0.1268	0.1220	-0.004	-0.001	0.005		
C52	0.3493	0.3437	0.3539	0.005	0.006	-0.010		
C53	-0.0233	-0.0300	-0.0186	0.005	0.007	-0.011		
H54	0.1767	0.1803	0.1623	-0.014	-0.004	0.018		
H55	0.1186	0.1241	0.1070	-0.012	-0.005	0.017		
H56	0.1295	0.1345	0.1240	-0.005	-0.005	0.010		
H57	0.1638	0.1668	0.1543	-0.009	-0.003	0.012		
H58	0.1359	0.1418	0.1269	-0.009	-0.006	0.015		
H59	0.1398	0.1427	0.1313	-0.008	-0.003	0.011		
H60	0.1645	0.1778	0.1527	-0.012	-0.013	0.025		
H61	0.3604	0.3635	0.2883	-0.072	-0.003	0.075		
H62	0.3792	0.3847	0.3509	-0.028	-0.006	0.034		
H63	0.3838	0.3906	0.3717	-0.012	-0.007	0.019		
H64	0.3777	0.3687	0.3815	0.004	0.009	-0.013		

Table S4. Second order perturbation theory analysis of Fock matrix of the baimantuoluoamide A molecule by NBO method

Donor (i)	ED $(i) e$	Acceptor (j)	ED $(j) e$	$E(2)a~({ m Kcal/mol})$	E(i) - E(j)b (arb. units)	F(i,j)c (arb. units)
π C 1 – C 6	1.62339	π^* C 2 – C 3	0.39456	23.45	0.29	0.074
π C 1 – C 6		π^* C 4 – C 5	0.32505	17.20	0.28	0.063
π C 2 – C 3	1.62780	$\pi^* \to 1 - \to 6$	0.02480	19.16	0.27	0.064
π C 2 – C 3		π^* C 4 – C 5	0.32505	22.37	0.27	0.07
π C 2 – C 3		π^* C 13 – C 15	0.11125	15.66	0.3	0.066
π C 4 – C 5	1.71565	π^* C 1 – C 6	0.02480	22.03	0.28	0.072
σ C 4 – C 5		σ^* C 2 – C 3	0.39456	16.03	0.29	0.063
π C 13 – H 14	1.98127	π^* C 15 – H 16	0.01701	5.27	0.95	0.063
π C 13 – C 15	1.88982	π^* C 2 – C 3	0.39456	10.99	0.3	0.056
π C 13 – C 15		π^* C 17 – O 18	0.29289	11.72	0.37	0.062
σ C 15 – H 16	1.97070	σ^* C 13 – H 14	0.01771	5.36	0.94	0.063
σ C 30 – H 32	1.95879	σ^* C 33 – O 34	0.22194	6.25	0.51	0.053
LP (1) O 11	1.97954	σ^* C 5 – C 6	0.02741	6.00	1.16	0.075
LP (2) O 11	1.87331	π^* C 1 – C 6	0.38295	26.81	0.35	0.093
LP (2) O 18	1.86209	σ^* C 15 – C 17	0.05511	17.03	0.67	0.098
LP (2) O 18		σ^* C 17 – N 19	0.08082	23.05	0.71	0.116
LP (1) N 19	1.67510	π^* C 17 – O 18	0.29289	39.01	0.34	0.103
LP (1) N 19		σ^* C 20 – H 21	0.01849	6.88	0.63	0.064
LP (1) N 19		σ^* C 24 – C 27	0.02182	6.49	0.63	0.062
LP (2) O 34	1.85042	σ^* C 30 – C 33	0.06074	17.80	0.65	0.098
LP (2) O 34		σ^* C 33 – O 35	0.10151	32.63	0.63	0.13
LP (1) O 35	1.96348	σ^* C 33 – O 34	0.02304	7.36	1.18	0.084
LP (1) O 35		σ^* C 36 – H 37	0.01347	0.55	0.95	0.021
LP (2) O 35	1.79462	π^* C 33 – O 34	0.22194	46.53	0.34	0.113

Donor (i)	ED $(i) e$	Acceptor (j)	ED (j) e	$E(2)a~({ m Kcal/mol})$	E(i) - E(j)b (arb. units)	F(i,j)c (arb. units)
π C 1 – C 2	1.68222	π^* C 3 – C 4	1.62693	20.65	0.27	0.07
π C 1 – C 2		σ^* C 5 – C 6	1.70029	21.61	0.27	0.07
$\sigma \to 1$ – C 6	1.96819	σ^* C 1 – C 11	1.98083	7.76	1.23	0.09
σ C 1 – C 6		σ^* C 5 – H 8	1.97812	18.40	1.20	0.13
σ C 1 – C 6		σ^* C 24 – H 26	1.97962	5.06	1.21	0.07
σ C 1 – C 6		σ^* O 42 – C 50	1.98389	12.75	1.02	0.10
σ C 1 – C 6		σ^* O 42 – C 52	1.98722	42.27	0.88	0.17
σ C 1 – C 6		σ^* O 47 – H 64	1.98835	1.82	1.27	0.04
σ C 1 – C 6		σ^* C 50 – H 56	1.97539	6.39	1.14	0.08
σ C 1 – C 6		σ^* C 52 – H 58	1.98353	14.34	3.28	0.19
σ C 1 – C 6		σ^* C 53 – H 60	1.97649	15.72	3.85	0.22
σ C 1 – C 11	1.98083	σ^* C 1 – C 2	1.96986	9.16	3.01	0.15
σ C 1 – C 11		σ^* C 1 – C 2	1.68222	6.41	2.46	0.12
σ C 1 – C 11		σ^* C 1 – C 11	1.98083	11.85	2.83	0.16
σ C 1 – C 11		σ^* C 5 – C 6	1.70029	10.95	2.45	0.16
σ C 1 – C 11		σ^* C 5 – H 8	1.97812	40.01	2.80	0.30
σ C 1 – C 11		σ^* C 10 – N 19	1.98643	10.24	2.84	0.16
σ C 1 – C 11		σ^* C 11 – H 12	1.97885	6.51	2.82	0.12
σ C 1 – C 11		σ^* C 33 – H 34	1.98150	21.91	2.75	0.22
σ C 1 – C 11		σ^* C 33 – H 35	1.98233	48.55	2.72	0.33
σ C 1 – C 11		σ^* O 36 – H 37	1.98701	14.12	2.86	0.18
σ C 1 – C 11		σ^* O 42 – C 50	1.98389	59.72	2.61	0.35
σ C 1 – C 11		σ^* O 42 – C 52	1.98722	180.58	2.47	0.60
σ C 1 – C 11		σ^* O 47 – C 53	1.99393	11.99	2.70	0.16
σ C 1 – C 11		* O 47 – H 64	1.98835	9.78	2.86	0.15
σ C 1 – C 11		σ^* C 50 – H 56	1.97539	31.99	2.73	0.27
σ C 1 – C 11		σ^* C 52 – H 58	1.98353	115.80	4.87	0.68
σ C 1 – C 11		σ^* C 53 – H 60	1.97649	135.14	5.45	0.77
σ C 3 – C 4	1.62693	$\sigma^* \to 1 - \to 2$	1.68222	5.32	0.39	0.04
σ C 3 – C 4		σ^* C 33 – H 35	1.98233	8.11	0.66	0.07
σ C 3 – C 4		σ^* O 42 – C 50	1.98389	11.82	0.54	0.08
σ C 3 – C 4		σ^* O 42 – C 52	1.98722	46.85	0.40	0.13
σ C 15 – H 18	1.97867	σ^* O 42 – C 52	1.98722	14.28	0.58	0.08
σ N 19 – C 24	1.98338	σ^* C 1 – C 11	1.98083	12.48	3.32	0.18
σ N 19 – C 24		σ^* C 5 – C 6	1.70029	10.82	2.94	0.18
σ N 19 – C 24		$\sigma^* \to 5$ – H 8	1.97812	39.55	3.28	0.32
σ N 19 – C 24		$\sigma^* \ge 24 - H = 26$	1.97962	24.92	3.29	0.26
σ N 19 – C 24		$\sigma^* \ge 33 - H = 34$	1.98150	22.52	3.24	0.24
σ N 19 – C 24		σ^* C 33 – H 35	1.98233	49.74	3.21	0.36
σ N 19 – C 24	1.98338	σ^* O 36 – H 37	1.98701	14.64	3.35	0.20
σ N 19 – C 24		σ^* O 42 – C 50	1.98389	60.80	3.10	0.39
σ N 19 – C 24		σ^* O 42 – C 52	1.98722	182.21	2.96	0.66
σ N 19 – C 24		σ^* O 47 – C 53	1.99393	12.21	3.19	0.18
σ N 19 – C 24		σ^* O 47 – H 64	1.98835	10.03	3.35	0.16
σ N 19 – C 24		$\sigma^* \to 50 - H = 56$	1.97539	32.77	3.22	0.29

Table S5. Second order perturbation theory analysis of Fock matrix of the baimantuoluoamide B molecule by NBO method

Donor (i)	ED $(i) e$	Acceptor (j)	ED $(j) e$	$E(2)a~({ m Kcal/mol})$	E(i) - E(j)b (arb. units)	F(i,j)c (arb. units)
σ N 19 – C 24		$\sigma^* \to 52$ – H 58	1.98353	123.03	5.36	0.73
σ N 19 – C 24		σ^* C 53 – H 60	1.97649	138.61	5.94	0.81
$\sigma \gets 24$ – C 27	1.97561	σ^* C 5 – H 8	1.97812	21.26	1.52	0.16
$\sigma \gets 24$ – C 27		σ^* C 10 – N 19	1.98643	8.41	1.57	0.10
$\sigma \gets 24$ - $C = 27$		$\sigma^* \gets 24$ - H 26	1.97962	18.56	1.53	0.15
$\sigma \gets 24$ – C 27		σ^* C 33 – H 34	1.98150	12.24	1.48	0.12
$\sigma \gets 24$ – C 27		σ^* C 33 – H 35	1.98233	27.61	1.45	0.18
$\sigma \gets 24$ – C 27		σ^* O 36 – H 37	1.98701	14.65	1.59	0.14
$\sigma \gets 24 - C + 27$		σ^* O 42 – C 50	1.98389	34.53	1.34	0.19
$\sigma \gets 24$ – C 27		σ^* O 42 – C 52	1.98722	109.99	1.20	0.33
$\sigma \gets 24$ – C 27		σ^* C 50 – H 56	1.97539	17.82	1.46	0.15
$\sigma \gets 24$ - $C = 27$		$\sigma^* \to 52$ – H 58	1.98353	53.25	3.60	0.39
$\sigma \gets 24$ – C 27		σ^* C 53 – H 60	1.97649	62.99	4.18	0.46
$\sigma \gets 29$ - H 30	1.96780	σ^* O 42 - C 50	1.98389	10.69	0.79	0.08
σ C 29 – H 30		σ^* O 42 – C 52	1.98722	36.59	0.65	0.14
$\sigma \gets 29 - O$ 38	1.99226	σ^* O 42 – C 52	1.98722	9.66	0.89	0.08
σ O 38 – H 39	1.98839	σ^* C 1 – C 11	1.98083	14.83	4.19	0.22
σ O 38 – H 39		$\sigma^* \to 5$ – C 6	1.70029	11.78	3.81	0.21
σ O 38 – H 39		σ^* C 5 – H 8	1.97812	45.04	4.15	0.39
σ O 38 - H 39		σ^* C 10 - N 19	1.98643	12.24	4.20	0.21
σ O 38 – H 39		$\sigma^* \gets 24$ - H 26	1.97962	29.56	4.16	0.31
σ O 38 – H 39		σ^* C 33 – H 34	1.98150	25.14	4.11	0.29
σ O 38 – H 39		σ^* C 33 – H 35	1.98233	54.25	4.08	0.42
σ O 38 – H 39		σ^* O 36 - H 37	1.98701	15.65	4.22	0.23
σ O 38 – H 39		σ^* O 42 – C 50	1.98389	64.59	3.97	0.46
σ O 38 – H 39		σ^* O 42 – C 52	1.98722	196.62	3.83	0.79
σ O 38 – H 39		σ^* O 47 – C 53	1.99393	13.47	4.06	0.21
σ O 38 – H 39		σ^* C 50 – H 56	1.97539	36.18	4.09	0.35
σ O 38 – H 39		$\sigma^* \to 52$ – H 58	1.98353	106.02	6.23	0.73
σ O 38 – H 39		$\sigma^* \to 53$ – H 60	1.97649	105.33	6.81	0.76
σ O 40 – H 41	1.98903	σ^* O 42 – C 52	1.98722	13.32	0.84	0.10
σ O 43 – C 48	1.99067	σ^* C 1 – C 11	1.98083	8.14	2.18	0.12
σ O 43 – C 48		$\sigma^* \to 5 - H 8$	1.97812	25.78	2.14	0.21
σ O 43 – C 48		$\sigma^* \gets 24$ – H 26	1.97962	16.76	2.15	0.17
σ O 43 – C 48		σ^* C 33 – H 34	1.98150	14.41	2.09	0.16
σ O 43 – C 48	1.99067	$\sigma^* \to 33 - H 35$	1.98233	32.07	2.07	0.23
σ O 43 – C 48		σ^* O 36 – H 37	1.98701	9.34	2.21	0.13
σ O 43 – C 48		σ^* O 42 – C 50	1.98389	52.29	1.96	0.29
σ O 43 – C 48		σ^* O 42 – C 52	1.98722	123.65	1.82	0.43
σ O 43 – C 48		σ^* O 47 – C 53	1.99393	8.01	2.05	0.11
σ O 43 – C 48		$\sigma^* \to 52$ – H 58	1.98353	65.26	4.22	0.47
σ O 43 – C 48		σ^* C 53 – H 60	1.97649	78.33	4.80	0.55
σ O 43 – H 61	1.98827	σ^* O 42 – C 52	1.98722	8.63	$1 \ 0.83$	0.08
σ O 45 – C 51	1.99067	σ^* O 42 – C 52	1.98722	31.15	0.97	0.16
σ O 47 – C 53	1.99393	$\sigma^* \to 5 - H 8$	1.97812	9.95	1.03	0.09
σ O 47 – C 53		σ^* C 33 – H 35	1.98233	15.03	0.96	0.11
σ O 47 – C 53		σ^* O 42 – C 50	1.98389	15.69	0.84	0.10
σ O 47 – C 53		σ^* O 42 – C 52	1.98722	69.69	0.71	0.20
σ O 47 – C 53		$\sigma^* \to 53$ – H 60	1.97649	17.52	3.68	0.23

Donor (i)	ED $(i) e$	Acceptor (j)	ED $(j) e$	$E(2)a~({ m Kcal/mol})$	E(i) - E(j)b (arb. units)	F(i,j)c (arb. units)
σ O 47 – H 64	1.98835	$\sigma^* \to 5 - H = 8$	1.97812	26.48	1.01	0.15
σ O 47 – H 64		σ^* C 24 – H 26	1.97962	19.09	1.02	0.13
σ O 47 – H 64		σ^* C 33 – H 34	1.98150	14.95	0.96	0.11
σ O 47 – H 64		σ^* C 33 – H 35	1.98233	35.28	0.94	0.16
σ O 47 – H 64		σ^* O 36 – H 37	1.98701	10.01	1.08	0.09
σ O 47 – H 64		σ^* O 42 – C 50	1.98389	49.16	0.83	0.18
σ O 47 – H 64		σ^* O 42 – C 52	1.98722	170.24	0.69	0.31
σ O 47 – H 64		σ^* O 47 – H 64	1.98835	12.49	1.08	0.10
σ O 47 – H 64		σ^* C 50 – H 56	1.97539	18.94	0.95	0.12
σ O 47 – H 64		σ^* C 52 – H 58	1.98353	64.47	3.09	0.40
σ O 47 – H 64		σ^* C 53 – H 60	1.97649	88.23	3.66	0.51
σ C 53 – H 59	1.98356	σ^* O 42 – C 52	1.98722	12.63	0.57	0.08
σ C 53 – H 59		σ^* C 50 – H 56	1.97539	8.59	0.83	0.08
σ C 53 – H 60	1.97649	σ^* O 42 – C 50	1.98389	14.11	0.72	0.09
$\sigma \gets 53$ - H 60		σ^* O 42 – C 52	1.98722	11.96	0.58	0.08
LP (1) N 19	1.60721	σ^* C 3 – C 4	1.62693	33.99	0.28	0.09
LP (1) N 19		σ^* C 10 – O 23	1.98055	56.60	0.28	0.11
LP (1) N 20	1.63839	σ^* C 3 – C 4	1.62693	35.43	0.30	0.09
LP (1) N 20		σ^* C 9 – O 22	1.99332	56.40	0.29	0.12
LP (2) O 22	1.85338	σ^* C 9 – C 10	1.97339	22.81	0.60	0.11
LP (2) O 22		σ^* C 9 – N 20	1.98961	25.60	0.70	0.12
LP (2) O 23	1.85640	σ^* C 9 – C 10	1.97339	19.74	0.62	0.10
LP (2) O 23	1.85640	σ^* C 10 – N 19	1.98643	31.87	0.68	0.13
LP (2) O 23		σ^* O 42 – C 52	1.98722	10.65	0.32	0.05
LP (2) O 36	1.95133	σ^* C 27 – H 28	1.97089	9.13	0.67	0.07
LP (1) O 38	1.97470	σ^* O 42 – C 52	1.98722	15.60	0.	0.09
LP (2) O 38	1.93679	σ^* C 5 – H 8	1.97812	15.85	0.92	0.11
LP (2) O 38		σ^* C 24 – H 26	1.97962	10.30	0.93	0.09
LP (2) O 38	1.93679	σ^* C 33 – H 34	1.98150	9.02	0.87	0.08
LP (2) O 38		σ^* C 33 – H 35	1.98233	21.21	0.85	0.12
LP (2) O 38		σ^* O 42 – C 50	1.98389	29.48	0.74	0.13
LP (2) O 38		σ^* O 42 – C 52	1.98722	105.18	0.60	0.22
LP (2) O 38		$\sigma^* \to 50$ – H 56	1.97539	13.76	0.86	0.10
LP (2) O 42		$\sigma^* \to 5 - H 8$	1.97812	8.68	0.86	0.08
LP (2) O 42		σ^* C 33 – H 35	1.98233	10.	0.79	0.08
LP (2) O 42	1.92549	σ^* O 42 – C 50	1.98389	15.45	0.68	0.09
LP (2) O 42		σ^* O 42 – C 52	1.98722	57.08	0.54	0.16
LP (2) O 42		$\sigma^* \to 52 - H 58$	1.98353	14.02	2.94	0.18
LP (2) O 46	1.88823	σ^* O 42 – C 52	1.98722	22.85	0.38	0.08
LP (1) O 47		$\sigma^* \to 24 - H 26$	1.97962	12.17	1.02	0.10
LP (1) O 47		σ^* C 33 – H 34	1.98150	8.79	0.97	0.08
LP (1) O 47		σ^* C 33 – H 35	1.98233	20.73	0.95	0.13
LP (1) O 47		σ^* O 42 – C 50	1.98389	29.87	0.84	0.14
LP (1) O 47	1.97854	σ^* O 42 – C 52	1.98722	107.49	0.70	0.25
LP (1) O 47		σ^* O 47 – H 64	1.98835	7.23	1.08	0.08
LP (1) O 47		$\sigma^* \to 50 - H 56$	1.97539	15.00	0.96	0.11
LP (1) O 47		$\sigma^* \to 52 - H = 58$	1.98353	28.32	3.10	0.27
LP (1) O 47		$\sigma^* \to 53 - H = 60$	1.97649	112.04	3.67	0.57
LP (2) O 47	1.94911	σ^* O 42 – C 52	1.98722	12.39	0.37	0.06