Supplementary Material to the article

“Casimir—Lifshitz friction force and kinetics of radiative heat transfer
of metal plates in relative motion”

When calculating integrals in (2), (3), (5)—(7), it is convenient to introduce a new frequency variable
w = U (Th, To)t, with v,,(T1,T2) = max(v1(T1), v2(T2)) and v;(T;) being the relaxation frequencies of plates
1 and 2 depending on their temperatures 77 and 75 (i = 1,2). The 2D wave-vector modulus (we use polar
coordinates (k, ¢) in the plane (kg,ky)) is expressed as k = (wp/c)\/y? + p2,t? in evanescent sector k > w/c
and k = (wp/c)/F%4t? — y? in radiation sector k < w/c, with additional parameters S, = vpm/wp, a; = v, /T;,
Vi = VifUm, A = wpa/c, ¢ = (V/e)B;,!t and K = hw2, (wp/c)*/2n%. With these definitions, for k > w/c, formulas
(2), (3) and (5) take the form
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For k < w/c¢, formulas (S8), (S9) should be used with the replacements y — i-y, and the substitution of G,,t
for oo in the integrals over y in (S1)—(S3).
In the case Ty = Ty = 0, Eq. (7) reduces to (only evanescent waves contribute)
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where 7(y,¢) = (ycos¢/+/1 — 52,¢? cos? ¢ and vy is the relaxation frequency corresponding to residual resis-
tance pg = 4myg /wg. For identical plates, in the limit V' — 0, Eq. (7) and (S10) can be simplified further. Really,
n (S8), for Imw;, one obtains (the final approximation holds for 0 < t < y < 00)
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while Imws is determined by the same Eq.(S11) when replacing ¢ — t~. Moreover, 7(y,¢) = (ycos¢ and
|D|? = 16y* exp(2Ay). Then the dimensionless integral in (S10) takes the form
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Inserting (S12) into (S10) yields Eq. (8).
In the case Ty = T> = T, using the same notation, Eq. (6) takes the form [19, 20]
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where |D| and Imw; are given by (9), (10); 8w = v(T')/wp and a = Av(T)/T. It is the dependence F, x 1/«
in (S13) that yields a large enhancement of friction at T — 0 for o« < 1, since I,,, weakly depends on «, and
v(T) = p(T)w}/4m decreases with decreasing temperature (see Fig. S1).

To verify this, we consider in (S14) the integration domain 0 < t < y, p < y < 0o, where p ~ 1 is a constant.
In this case, it follows a? sinh(at/2)~2 ~ 4/t%, (Imw )? ~ t2 /492, |D|? ~ 16y* exp(2\y). Inserting these relations
into (S14) yields the assessment
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with Fi(—z) being the integral exponential function. As follows from the numerical computation, Eq. (S15) yields
the essential part of the integral in (S14).
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Fig. S1. Au resistivity [26]



Table S1. Friction coefficient of gold plates depending on temperature T and gap width a in models BG and BGM (V = 1m/s)

T, K n, BG (kg/m? -s) n, BGM (kg/m? -s)
a, nm 10 15 20 10 15 20
1 1.53-10° 1.13-10° 8.69-10~6 1.76 - 10~7 1.16 - 107 8.80-10~8
2 8.27-10~4 6.08-104 4.63-10~4 3.84-.1077 2.58 1077 1.88-1077
3 3.46-10~3 2.44-1073 1.80-10—3 5.88-10~7 3.95- 1077 2.87-1077
5 1.08-1073 7.25-1074 5.26 - 104 9.69-10~7 6.49 -10~7 4.70-1077
10 6.74-107° 4.51-107° 3.28.107° 1.77-10~7 1.18 - 106 8.59-10~7
15 1.35-107° 9.03-10-6 6.55- 106 2.44-10-6 1.63-10—6 1.18-106
20 4.76 - 10~ 6 3.19-10-6 2.31-10-6 2.23-10-6 1.49-10-6 1.08 - 106
50 6.41-10"7 4.30-10"7 3.12.10°7 8.05-10~7 5.94.10~7 3.92.10°7
100 4.07-1077 2.71-1077 1981077 5.55-10~7 3.72-1077 2.71-1077
200 3.59 1077 2.39-10~7 1.74-1077 4.47-1077 3.00-10~7 2.19-1077
300 3.50-10~7 2.33.10~7 1.70- 107 4.38 1077 2.94.10"7 2.14-1077
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Fig. S2. The proposed setup (side view) for measuring Casimir—Lifshitz friction force. The top plate (disk) can rotate with
an angular velocity 2. On the outer side, the disks have a heat-shielding coating, and on the inner side, they have a metal
coating over the entire area with an annular protrusion having a height h and a width w < D in the peripheral region.
The protruding annular parts of the discs are in vacuum contact with an adjustable gap width a < h. When the upper
disk rotates, its annular surface moves with a linear velocity V = QD/2. Heating is carried out by near-field modes in
the region of the annular protrusions. The contributions from the portions of the plates located at a distance a 4 2h are
negligibly small. The temperature control of immovable disk 1 is provided by a thermal sensor. At rotation frequencies
n =1+ 10*rps and disk diameter D = 0.1 m, the investigated speed range will be 0.3 < 3000 m/s. The optimal scenario
for measurements seems to be the quasi-stationary temperature regime, when the temperatures of the disks increase at
the same rate from the initial temperature Typ. The time of heating can be varied in a wide range by changing the velocity
V', distance a, geometric dimensions and material properties of the plates



