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A new type of massless Dirac fermions in
a crystalline topological insulators

Crystalline and crystalline topological insulators Quasiparticle dispersion law at symmetrical points
in Brillouin (BZ) zone in the non-magnetic 1D, 2D and 3D structures is dictated by the space group symmetry
of the crystal and the time-reversal invariance.

There are 230 three-dimensional (3D) crystal groups [1]. The electronic spectrum εi(kx, ky, kz) (i is band
index) is determined by the irreducible representations of these groups. A cleaving three-dimensional (3D)
infinite crystal into two semi-infinite crystal with the surface may lead to appearance of localized surface
states on 3D crystal surface. The appearance or absence of such surface states is determined by the details of
the Hamiltonian on the surface. The dispersion relation of the surface states εi(kx, ky) in 3D a semi-infinite
crystals is described by the irreducible representations of 17 2D surface groups [1].

Note that the surface states of a purely two-dimensional (2D) systems, such as monoatomic layer of
graphite (graphene), are described by irreducible representations of the same 17 2D surface groups. The only
difference is that in the semi-infinite crystal there is additional continuous spectrum, formed by the projections
of Πkz bulk spectrum of the crystal – εi bulk(kx, ky) = Πkzεi bulk(kx, ky, kz) (situation 3D→2D).

In the case of a purely two-dimensional 2D systems projection of the bulk spectrum are absence, and there
are only two-dimensional spectrum – εi(kx, ky), the form of which is also determined by representations of
one of the 17 2D surface groups.

A similar situation occurs for 2D crystals with a surface (2D→1D situation). Suppose there is an infinite
2D crystal, from which one can get a semi-infinite 2D system (2D system with 1D surface), or tape. On
the surface of a semi-infinite 2D crystal or on the belt edge, can also occur surface (edge) states with one-
dimensional dispersion εi(kx). From the point of view of the symmetry the dispersion of surface states in a
semi-infinite 2D crystal or tape, should be described by the representations of one of the 7 crystal 1D groups
(groups of borders [1]).

When you cut a semi-infinite crystal (or tape) from the 2D system, the spectrum of an infinite 2D crystal
εibulk(kx) = Πkyεibulk(ky, kx) (2D→1D) projected onto the surface and forms 1D, as in the previous case –
3D→2D, projection bulk bands. Surface (edge) states with one-dimensional εi(kx) dispersion, if they do not
fall into the projection of bulk bands to be classified according to the irreducible representations of one of the
seven groups of 1D crystal borders.

Further, when the 2D or 3D volume range is as follows. that the system is an insulator, the projections
of different bulk bands do not overlap at any points in k-space (kx, ky in 2D, and at kx 1D), then the system
without surface states is an insulator. It is assumed that the number of electrons per unit cell such that the
Fermi level is in the bulk energy gap.

However, if in the projections of the bulk energy gap surface states arise and intersect the Fermi level,
then the system becomes conductive on the surface (metal or semimetal – this is the detail of terminology)
while remaining insulator in the bulk.

• For a listing of all the types of features of the spectrum of surface states at the symmetry points in the
Brillouin zone in 3D→2D, a 2D→1D and 2D purely two-dimensional cases, no topological argument
is not required. One needs only to spatial representations of the corresponding crystalline groups and
invariance under time reversal.

• The presence of surface states, their position in energy relative to the projections of a bulk bands in the
3D→2D and 2D→1D cases determined by the details of the Hamiltonian on the surface.

Conical Dirac spectrum with greater than 2-fold degeneracy (up to 16-fold) occurs in field theories and
superfluid 3He-A (see, eg, [2] and references therein). However, the symmetry groups in these models, very
different than the crystalline group whose views and dictate the appearance of these features. Presentation
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Figure 1: The projections of the bulk bands and surface states. Case 2-fold degeneracy: a) conventional insulator, b) a
topological insulator. Case 4-fold degeneracy: c) conventional insulator, d) a topological insulator.

of a particular symmetry of the crystal system provides a recipe for the implementation of this spectrum
through artificial structures with this symmetry. Moreover, there may be created with the desired photonic
crystal symmetry, where there must be similar spectral features.

The methods of algebraic topology in this problem arise when one can try to answer the following question.
Suppose we have two Hamiltonian H1 and H2, describing the 3D→2D (or 2D→1D) system, each of which

is invariant with respect to the crystal symmetry group and inversion time, and gives the surface states in
the Brillouin zone symmetry points out projections of bulk bands. Hamiltonians are continuous deformation,
which is achieved by varying the parameters describing them, the same way that the gap in projected bulk
bands do not slam. Surface states are genetically derived from the states of bulk bands and the total number
of states in the crystal does not change, then there are two possible situations.

In the first situation (Fig. 1 b).d))), the deformation of H1, surface states may be forced out of the band
gap of the projections of the spectrum to the continuum (the projection of bulk bands). The system would be
an insulator as in the bulk and on the surface. Systems with Hamiltonians of this type are called conventional
insulators.

In the second case (Figure 1a),c)), the deformation of H2 can not push out of the surface states to
continuous spectrum (bulk bands). The system is an insulator in volume, but remains metal on the surface.
Systems with such Hamiltonians are called topological insulators.1

The whole set of Hamiltonians satisfying the requirements of the crystal symmetry and time reversal,
considered as a topological manifold is divided into equivalence classes. To characterize these classes are
convenient topological invariants which do not depend on the particular Hamiltonian, and depend only on the
equivalence class. If the two Hamiltonians have different topological invariants, then obviously they belong
to different classes.

The choice is dictated by a set of invariants of a physical challenge, and the fact that there should be a
constructive procedure for computing invariants on the basis of diversity, such as Hamiltonians. The goal of
topological analysis is to break the variety of Hamiltonians into equivalence classes, distinguishing topological

1Traditionally topological insulators in the case of 3D→2D called 3D, as in the case of 2D→1D 2D, or more often, the spin-Hall
topological insulators [5, 6], which can lead sometimes to confusion.
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insulators from conventional insulators.
Topological classification is as follows (see [3]). It is assumed that there exist surface states. It is con-

structed the Hamiltonian H (k), describing the surface states for a given crystal group (here k= (kx, ky) for
the 3D→2D, and k= (kx) for the 2D→1D cases).

Since the wave function is an eigenfunction of the Hamiltonian for the calculation of topological invariants
need to know the behavior of the wave functions for the entire Brillouin zone, it is necessary to have a complete
the Hamiltonian H(k), which takes into account all the features of the spectrum of surface states dictated
symmetry. In actual calculations, the Hamiltonian is written in the tight-binding (with hoppings in the lattice
between nearest neighbors or next-nearest, [3]). After that starts the Hamiltonian depends explicitly on a set
of model parameters {d} – H (k, {d}).

For a listing of different equivalence classes of Hamiltonians (topological phases) is used, so-called, Z2

classification [3–5]. Since all of the wave function are |ψ
i,k〉 (i – band index) eigenfunctions of H(k, {d}), then

the functions of different itinerant indexes represent different branches of a single function, defined on the
Riemann surface. This allows you to enter a single function for the entire Brillouin zone for different values
of k. Let K – time reversal operator. Since the Hamiltonian is invariant under time reversal, the spectrum is
also invariant under the inversion pulse quasi-momentum (ε(k) = ε(−k)), with the branches of the spectrum
with k and −k functions can meet with one or a few sheets of the Riemann surface. This information is
included in the value of a polynomial – the Pfaffian of a skew-symmetric matrix formed from the elements
of 〈ψ

j,-k|Kψi,k〉. The value of the polynomial (Pfaffian), because the total wave function on the Riemann

surface is a topological invariant, whose value is dependent at BZ k and a set of parameters {d}, describing
the Hamiltonian H(k,{d}). Convenient to use the normalized value [3–5]

δ(k, {d}) =
√

Det{〈ψ
j,-k|Kψi,k〉}/Pf{〈ψ

j,-k|Kψi,k〉},

where as the k – vector is taken in a symmetric point Brillouin zone for the case of one-dimensional 2D→1D,
and for the case of two-dimensional 3D →2D (see [3]).

In the symmetric points of the BZ k and -k are not only time-reversal operation, but also the elements of
symmetry of the crystal. The value of δ(k, {d}), which is a topological invariant, can be set to ± 1 and can be
expressed explicitly (when fixing the symmetrical point in the BZ) through the parameters of the Hamiltonian
H(k,{d}), defined over the entire BZ. Different sets of values (δ(kisym, {d}) symmetric points kisym, depending
on the set {d}, describe the different equivalence classes (the topological phase) Hamiltonians H(k,{d}).

Possible topological phases and their classification for the surface states is determined by a set of parameters
of the Hamiltonian for these states.

Informal meaning of the topological invariant [3] is as follows. In the case, 2D→1D Hamiltonian is
H(k,{d})(k = kx), and the surface BZ is a segment. Dirac cone is only possible in the center of the zone and
at the border. In this case, the invariant gives the number of intersections (δ = +1 – even, δ = −1 – odd)
surface states of the Fermi level. Different values of the topological invariant correspond to different ways of
transition between the branches of the spectrum of surface states at different points in the Brillouin zone (Fig.
1). In a case of an even number of crossings (Fig. 1), the surface states can be stamped in the projection of
bulk bands. When an odd number of intersections (Fig. 1), the surface states can not be pushed out of the
band gap and are in this sense are topologically protected. In a formal language the number of intersections
of the Fermi level is the number of transitions from one sheet of the Riemann surface on the other when
the quasi-momentum from one point to another symmetrical point. Have a similar meaning invariants for
3D→2D situation. In this case, there is a set of topological invariants for symmetric points, each of which
has a sense of the number of crossings of the Fermi level in the motion along the line coupling of points with
k and −k. A set of invariants for symmetric points characterizes a particular topological phase.

In the case of 2-fold degeneracy of the Dirac cone as possible in the center of the Brillouin zone (point of
Γ), and in the edge of the BZ M point. Surface states are topologically stable in the sense that it cannot be
of pushed to bulk bands only if odd number of intersections of the Fermi level (Fig. 1b)). If even the number
of crossings - surface states are unstable (Figure 1a)) and can be pushed out of the band gap. Is therefore
sufficient to Z2 classification.
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In the case of the 4-fold degeneracy at the point M we have a different situation. At the point of Γ is
allowed only 2-fold degeneracy. Even with the even the number of intersections of the Fermi level (Fig. 1)
may be unsustainable (ris.2c)) and stable surface states (Fig. 1d)), which may require a a different set of
topological invariants.

The fundamental point to understand the situation is as follows. By itself does not give a topological
classification of the types of singularities of the electronic spectrum, 2-fold degenerate, 4-fold degenerate
Dirac cones and others mentioned above features. These features are dictated by the crystal symmetry in
conjunction with the operation of time reversal, and laid in the Hamiltonian of the “hands”. Topological
invariants only way to fix the connection features of the spectrum, which are incorporated in the Hamiltonian,
and can not predict the features themselves. Therefore, if the form of the Hamiltonian does not take into
account all the possible features of the spectrum dictated by the crystal symmetry and the inverse of the
time, part of the topological phases (different set of values (δ(kisym, {d})), will be skipped. For a listing of
all the features needed tppov themselves other than the topological invariants, mathematical tools.

Symmetry allows for 4-fold degenerate Dirac cones that are not in full, according to the authors of [5],
the topological classification. Such features are not played by the Hamiltonian used in [5]. In this you can
see directly as a model Hamiltonian H(k,{d})((k = (kx, ky) [5] does not contain the Dirac features more than
2-fold degeneracy. Therefore, the topological classification, based on a calculation of Z2 invariants in [5], is
not complete.

The Hamiltonian in [5] is taken in the form.

Ĥ(k) =

(
H(k) 0

0 H(-k)

)
,

H(k) and H(-k) – correspond to points related to the inverse of the time in the lattice. In the case of a point
M , all points of M are equivalent, and the Hamiltonian in [5] is - H(k) ∼ σ · d(k)(σ – vector of the Pauli
matrices). The spectrum at a point M has the form ε(k) ∼ ±|d(k)| (k = (kx, ky)), which implies that the
spectrum at M has only a 2-fold degeneracy, rather than 4-fold degeneracy.

The Hamiltonian H (k, {d}) (k = (kx, ky) should be parameterized throughout the two-dimensional
Brillouin zone in such a way as to reproduce all allowable range of features in symmetrical points. Above
were clearly facing new, not previously discussed for topological insulators, 4-fold degenerate Dirac cone that
can exist at a point M in the two-dimensional Brillouin zone. In the center of the Brillouin zone in the point
Γ is only possible 2-fold degenerate Dirac cone. Feature in the spectrum with a greater degree of degeneracy
symmetry is not allowed. More than obvious that this type of features will lead to new topological phases
(sets of values of topological invariants of δ(kisym, {d}), where possible new ways of connecting singular points
of the spectrum of surface states.

Knowing all types of features can be parameterized H (k, {d}) (k = (kx, ky) for the whole Brillouin zone,
so that reproduced all the features of the spectrum in the symmetric points, then calculate invariants is a
purely technical problem. Because in itself it requires additional space, it makes sense to bring these results
separately.
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