
Supplemental material to the article

“Lattice Gas Dynamics”

Here, we derive the master equation for dynamic correlation function.
Consider three time moments: initial (t1 = 0), intermediate (t2 = t), and
final (t3 = ∆t + 1). The statistical weight of corresponding random process
(eq. 11 of main text) is:
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For arbitrary second time moment t 6= 1, one has to treat all spatial lattice
sites as nearest neighbors, and useDb,w(r, r

′, t) instead of diffusion coefficients
Dw,b (lines 5 and 7 in (1)). To get dynamic correlation function at final
moment t + 1, let us average (1) over configurations {n1, n2, n3}

Db,w(r, r
′, t + 1) =

1
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∼
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The ”∼” means that the sum covers only those realizations of the process,
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which include transition of one and the same black (for Db(r, r
′, t + 1)) or

white (forDw(r, r
′, t+1)) particle from r at t1 = 0 to r′ at t3 = t+1. To fulfill

this condition, we use known trick which allows to select single polymer line
in polymer statistics. Let us introduce into (1) three additional scalar fields.
The first of them – y – is complex delta - correlated spatial field. We insert
y(r) into every ending of diffusion step of black particle during time t1 → t2,
and its conjugated value y∗(r) – into every beginning of those during t2 → t3.
The other two fields ψ1 and ψ2 serve as indicators (without integration over
them). We put ψ1(r) into every beginning of black particle diffusion step
during t1 → t2, and ψ2(r) – into every ending of those during t2 → t3. As a
result, one gets the functional of fields ψ1, ψ2
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which is the generating functional for (2):
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(4)

The Dw(r, r
′, t) may be calculated by similar way. The (4), after calculation

of functional integrals in (1,3), is the master equation on dynamic correla-
tion function Db,w(r, r

′, t). The approach may be considered as a lattice gas
analogue of the mode coupling theory.
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For quasi – binary system, there are no auxiliary field w, i.e. one put
w2 = w3 = 0, and omits integration over these fields. The lower index w is
insufficient in this case, so we denote Ωb = Ω, Db = D.

(3) contains filling numbers n2 as local term, so that sum over these
variables may be easily done. To do so over {n1}, {n3}, one uses Hubbard –
Stratonovich transform to auxiliary fields x1(r), x3(r). As a result one gets
functional integral over x1, x3, b3, b2, y, with ”Lagrangian”, containing ”free
field” quadratic part
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Expanding the last up to the first order of b3, b2, y, and calculating resulting
Gauss integrals, one gets
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where α = ix1 + µ1 , β = x3 + µ3. Chemical potentials µ1(r) and µ3

allow one to specify initial and final sets of configurations, respectively. For
integration over x3, we use the mean field approximation, i.e. maximization
of Γ with respect to x3:
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= 0. (8)

Then, one has to average solution of (8) over x1(r). Instead, we average (8)
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and angular brackets denote gaussian average
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Equation (4) takes the form:
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Normalizing multiplier N has to be chosen as to provide

∑

r′

D(r, r′, t) = 1. (13)

In (12) we denoted D(r, r′) = D(r, r′, t = 1). In (13), summation extends
over all points, including r′ = r. Eqs. (9 – 13) provide the necessary master
equation. Let us list approximations used:

1. linear expanding of interaction term;

2. mean – field integration over x3;

3. average of (8) before its solution.
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