Supplemental material to the article "Lattice Gas Dynamics"

Here, we derive the master equation for dynamic correlation function. Consider three time moments: initial $(t_1 = 0)$, intermediate $(t_2 = t)$, and final $(t_3 = \Delta t + 1)$. The statistical weight of corresponding random process (eq. 11 of main text) is:

$$\Omega \left\{ n_{1} \rightarrow n_{2} \rightarrow n_{3} \right\} = \exp \left(\frac{H \left\{ n_{1}(r) \right\} - H \left\{ n_{3}(r) \right\}}{T} \right) \cdot \\
\cdot \int \prod_{r} db_{3}(r) db_{2}(r) dw_{3}(r) dw_{2}(r) \cdot \\
\cdot \left(1 + s_{2b}^{-} b_{2} \right) \left(1 + s_{3b}^{-} b_{3} \right) \cdot \left(1 + s_{2w}^{-} w_{2} \right) \left(1 + s_{3w}^{-} w_{3} \right) \cdot \\
\cdot \left(1 + \left[s_{2b}^{+} + (n_{1} - s_{2b}^{+}) b_{2} \right] \sum_{r'} D_{b}(r, r', t) b_{2}^{*}(r') \right) \cdot \\
\left(1 + \left[s_{3b}^{+} + (n_{2} - s_{3b}^{+}) b_{3} \right] \sum_{d} D_{b} b_{3}^{*}(r + d) \right) \cdot \\
\cdot \left(1 + \left[s_{3w}^{+} + (1 - n_{1} - s_{2w}^{+}) w_{2} \right] \sum_{r'} D_{w}(r, r', t) w_{2}^{*}(r') \right) \cdot \\
\cdot \left(1 + \left[s_{3w}^{+} + (1 - n_{2} - s_{3w}^{+}) w_{3} \right] \sum_{d} D_{w} w_{3}^{*}(r + d) \right) \cdot \\
\cdot \exp \left\{ -\frac{1}{2} (b_{2} b_{2}^{*} + b_{3} b_{3}^{*} + w_{2} w_{2}^{*} + w_{3} w_{3}^{*}) \right\}. \tag{1}$$

For arbitrary second time moment $t \neq 1$, one has to treat all spatial lattice sites as nearest neighbors, and use $D_{b,w}(r,r',t)$ instead of diffusion coefficients $D_{w,b}$ (lines 5 and 7 in (1)). To get dynamic correlation function at final moment t+1, let us average (1) over configurations $\{n_1, n_2, n_3\}$

$$D_{b,w}(r,r',t+1) = \frac{1}{A} \sum_{\{n_1,n_2,n_3\}}^{\sim} \Omega \{n_1 \to n_2 \to n_3\},$$

$$A = \sum_{\{n_1,n_2,n_3\}} \Omega \{n_1 \to n_2 \to n_3\}.$$
(2)

The " \sim " means that the sum covers only those realizations of the process,

which include transition of one and the same black (for $D_b(r, r', t+1)$) or white (for $D_w(r, r', t+1)$) particle from r at $t_1 = 0$ to r' at $t_3 = t+1$. To fulfill this condition, we use known trick which allows to select single polymer line in polymer statistics. Let us introduce into (1) three additional scalar fields. The first of them -y – is complex delta - correlated spatial field. We insert y(r) into every ending of diffusion step of black particle during time $t_1 \to t_2$, and its conjugated value $y^*(r)$ – into every beginning of those during $t_2 \to t_3$. The other two fields ψ_1 and ψ_2 serve as indicators (without integration over them). We put $\psi_1(r)$ into every beginning of black particle diffusion step during $t_1 \to t_2$, and $\psi_2(r)$ – into every ending of those during $t_2 \to t_3$. As a result, one gets the functional of fields ψ_1 , ψ_2

$$\Omega_{b} \left\{ \psi_{1}, \psi_{2} \right\} = \sum_{\{n_{1}, n_{2}, n_{3}\}} \exp \left(\frac{H \left\{ n_{1}(r) \right\} - H \left\{ n_{3}(r) \right\}}{T} \right) \cdot \int \prod_{r} db_{3}(r) db_{2}(r) dw_{3}(r) dw_{2} \cdot \left(1 + s_{2b}^{-} y b_{2} \right) \left(1 + s_{3b}^{-} b_{3} \right) \left(1 + s_{2w}^{-} w_{2} \right) \left(1 + s_{3w}^{-} w_{3} \right) \cdot \left(1 + \left[s_{2b}^{+} + (n_{1} - s_{2b}^{+}) b_{2} \right] \psi_{1} \sum_{r'} D_{b}(r, r', t) b_{2}^{*}(r') y(r') \right) \cdot \left(1 + \left[s_{3b}^{+} + (n_{2} - s_{3b}^{+}) b_{3} \right] y^{*} \sum_{d} D_{b} b_{3}^{*}(r + d) \psi_{2}(r + d) \right) \cdot \left(1 + \left[s_{2w}^{+} + (1 - n_{1} - s_{2w}^{+}) w_{2} \right] \sum_{r'} D_{w}(r, r', t) w_{2}^{*}(r') \right) \cdot \left(1 + \left[s_{3w}^{+} + (1 - n_{2} - s_{3w}^{+}) w_{3} \right] \sum_{d} D_{w} w_{3}^{*}(r + d) \right) \cdot \left(1 + \left[s_{3w}^{+} + (1 - n_{2} - s_{3w}^{+}) w_{3} \right] \sum_{d} D_{w} w_{3}^{*}(r + d) \right) \cdot \exp \left\{ -\frac{1}{2} (b_{2} b_{2}^{*} + b_{3} b_{3}^{*} + w_{2} w_{2}^{*} + w_{3} w_{3}^{*} + y y^{*} \right) \right\}, \tag{3}$$

which is the generating functional for (2):

$$D_b(r, r', t+1) = \frac{1}{A} \cdot \frac{\partial^2 \Omega_b \{\psi_1, \psi_2\}}{\partial \psi_1(r) \partial \psi_2(r')} \bigg| \psi_1 = \psi_2 = 1$$

$$\tag{4}$$

The $D_w(r, r', t)$ may be calculated by similar way. The (4), after calculation of functional integrals in (1,3), is the master equation on dynamic correlation function $D_{b,w}(r, r', t)$. The approach may be considered as a lattice gas analogue of the mode coupling theory.

For quasi – binary system, there are no auxiliary field w, i.e. one put $w_2 = w_3 = 0$, and omits integration over these fields. The lower index w is insufficient in this case, so we denote $\Omega_b = \Omega$, $D_b = D$.

(3) contains filling numbers n_2 as local term, so that sum over these variables may be easily done. To do so over $\{n_1\}$, $\{n_3\}$, one uses Hubbard – Stratonovich transform to auxiliary fields $x_1(r)$, $x_3(r)$. As a result one gets functional integral over x_1, x_3, b_3, b_2, y , with "Lagrangian", containing "free field" quadratic part

$$-\frac{T}{2} \sum_{r,r'} x_1(r) J^{-1}(r,r') x_1(r') -$$

$$-\frac{T}{2} \sum_{r,r'} x_3(r) J^{-1}(r,r') x_3(r') -$$

$$-\frac{1}{2} \sum_{r} (b_2 b_2^* + b_3 b_3^* + yy^*) , \qquad (5)$$

and logarithmic interaction term $\sum_{r} \ln \Theta(r)$, where

$$\Theta = 1 + (1 - b_2)(1 + F) + e^{\alpha}[1 + (1 + F)(1 + G)] + e^{\beta}[1 + b_3 + (1 - b_2)(1 + b_3 F)] + e^{\alpha + \beta}[1 + b_3 + (1 - b_2)(1 + b_3 F) + e^{\alpha + \beta}[1 + b_3 + (1 - b_2)(1 + b_3 F) + e^{\alpha + \beta}[1 + b_3 + (1 - b_2)(1 + b_3 F)] ,$$

$$F(r) = y^*(r) \sum_{r'} D(r, r') b_3^*(r') \psi_2(r') ,$$

$$G(r) = \psi_1(r) \sum_{r'} D(r, r', t) b_2^*(r') y(r') .$$
(6)

Expanding the last up to the first order of b_3, b_2, y , and calculating resulting Gauss integrals, one gets

$$\Omega\{\psi_1, \psi_2\} = \int Dx_1 Dx_3 \exp\left[\Gamma\{x_1, x_3, \psi_1, \psi_2\}\right],$$

$$\Gamma\{x_1, x_3, \psi_1, \psi_2\} = -\frac{T}{2} \sum_{r,r'} x_1(r) J^{-1}(r, r') x_1(r') - \frac{T}{2} \sum_{r,r'} x_3(r) J^{-1}(r, r') x_3(r') + \ln\left(1 + e^{\alpha}\right) + \frac{T}{2} \sum_{r,r'} x_3(r) J^{-1}(r, r') x_3(r') + \ln\left(1 + e^{\alpha}\right) + \frac{T}{2} \sum_{r,r'} x_3(r) J^{-1}(r, r') x_3(r') + \ln\left(1 + e^{\alpha}\right) + \frac{T}{2} \sum_{r,r'} x_3(r) J^{-1}(r, r') x_3(r') + \frac{T}{2} \sum_{r,r'} x_3(r) J^{-1}(r, r') x_$$

$$+ \ln\left(1 + e^{\beta}\right) + \frac{1}{128} \sum_{r,r',r''} \left(\frac{e^{\alpha}}{1 + e^{\alpha}} \psi_{1}\right)_{r'} D(r',r,t) \cdot \left(\frac{e^{\alpha}}{(1 + e^{\alpha})^{2} (1 + e^{\beta})}\right)_{r} D(r,r'') \left(\frac{e^{\beta}}{1 + e^{\beta}} \psi_{2}\right)_{r''}, \tag{7}$$

where $\alpha = ix_1 + \mu_1$, $\beta = x_3 + \mu_3$. Chemical potentials $\mu_1(r)$ and μ_3 allow one to specify initial and final sets of configurations, respectively. For integration over x_3 , we use the mean field approximation, i.e. maximization of Γ with respect to x_3 :

$$\frac{\delta\Gamma\left\{x_1, x_3, \psi_1, \psi_2\right\}}{\delta x_3(r)} = 0. \tag{8}$$

Then, one has to average solution of (8) over $x_1(r)$. Instead, we average (8) before its solution:

$$T \sum_{r'} J^{-1}(r - r') x_3(r') = \left(\frac{e^{\beta}}{1 + e^{\beta}}\right)_r - \frac{1}{128} K(r) \left(\frac{e^{\beta}}{(1 + e^{\beta})^2}\right)_r \sum_{r'} D(r, r') \left(\frac{e^{\beta}}{1 + e^{\beta}}\right)_{r'} + \frac{1}{128} \left(\frac{e^{\beta}}{(1 + e^{\beta})^2}\right)_r \sum_{r'} D(r, r') K(r') \left(\frac{1}{1 + e^{\beta}}\right)_{r'},$$
(9)

where

$$K(r) = \sum_{r'} D(r, r', t) \left\langle \left(\frac{e^{\alpha}}{1 + e^{\alpha}} \right)_r \left(\frac{e^{\alpha}}{(1 + e^{\alpha})^2} \right)_{r'} \right\rangle, \tag{10}$$

and angular brackets denote gaussian average

$$\langle ... \rangle = \int ... Dx_1 \exp\left(-\frac{T}{2} \sum_{r,r'} x_1(r) J^{-1}(r,r') x_1(r')\right).$$
 (11)

Equation (4) takes the form:

$$D(r, r', t+1) = N \sum_{r''} \left\langle \left(\frac{e^{\alpha}}{1 + e^{\alpha}} \right)_r \left(\frac{e^{\alpha}}{(1 + e^{\alpha})^2} \right)_{r''} \right\rangle \cdot D(r, r'', t) D(r'', r') \left(\frac{1}{1 + e^{\beta}} \right)_{r''} \left(\frac{e^{\beta}}{1 + e^{\beta}} \right)_{r'}.$$
(12)

Normalizing multiplier N has to be chosen as to provide

$$\sum_{r'} D(r, r', t) = 1. \tag{13}$$

In (12) we denoted D(r,r') = D(r,r',t=1). In (13), summation extends over all points, including r' = r. Eqs. (9 – 13) provide the necessary master equation. Let us list approximations used:

- 1. linear expanding of interaction term;
- 2. mean field integration over x_3 ;
- 3. average of (8) before its solution.