For authors
Submission status

Archive (English)
   Volumes 61-80
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 81-92
      Volume 92
      Volume 91
      Volume 90
      Volume 89
      Volume 88
      Volume 87
      Volume 86
      Volume 85
      Volume 84
      Volume 83
      Volume 82
      Volume 81
VOLUME 85 | ISSUE 5 | PAGE 314
The density of stationary points in a high-dimensional random energy landscape and the onset of glassy behaviour
PACS: 05.40.-a, 75.10.Nr
We calculate the density of stationary points and minima of a N\gg 1 dimensional Gaussian energy landscape. We use it to show that the point of zero-temperature replica symmetry breaking in the equilibrium statistical mechanics of a particle placed in such a landscape in a spherical box of size L=R\sqrt{N} corresponds to the onset of exponential in N growth of the cumulative number of stationary points, but not necessarily the minima. For finite temperatures we construct a simple variational upper bound on the true free energy of the R=∞ version of the problem and show that this approximation is able to recover the position of the whole de-Almeida-Thouless line.