Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 81-92
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 61-80
      Volume 80
      Volume 79
      Volume 78
      Volume 77
      Volume 76
      Volume 75
      Volume 74
      Volume 73
      Volume 72
      Volume 71
      Volume 70
      Volume 69
      Volume 68
      Volume 67
      Volume 66
      Volume 65
      Volume 64
      Volume 63
      Volume 62
      Volume 61
Search
VOLUME 69 (1999) | ISSUE 4 | PAGE 257
Rotational quantum friction in superfluids: Radiation from object rotating in superfluid vacuum
We discuss the friction experienced by the body rotating in superfluid liquid at Τ — 0. The effect is analogous to the amplification of electromagnetic radiation and spontaneous emission by the body or black hole rotating in quantum vacuum, first discussed by Zel'dovich and Starobinsky. The friction is caused by the interaction of the part of the liquid, which is rigidly connected with the rotating body and thus represents the со moving detector, with the "Minkowski" superfluid vacuum outside the body. The emission process is the quantum tunneling of quasiparticles from the detector to the ergoregion, where the energy of quasiparticles is negative in the rotating frame. This quantum rotational friction caused by the emission of quasiparticles is estimated for phonons and rotons in superfluid 4He and for Bogoliubov fermions in superfluid 3He.